
Micromechanics

Lars Pastewka, Viacheslav Slesarenko

October 10, 2023



© 2010-2016 Keith Kobry, Peter Woias; 2017-2023 Richard Leute, Wolfram
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Chapter 1

Force and moment equilibria

1.1 Statics, rigid bodies and force systems

Statics is the subdivision of mechanics concerned with the forces that act on
solid bodies at rest under equilibrium conditions. The solid body can be
thought of as a collection of matter within an identifiable boundary, and it is
important to distinguish notions of rigid and deformable bodies.

(a) (b)

Figure 1.1: The rigid body (a) can translate and rotate, while the deformable
body (b) can also change its shape.

Rigid body (Chapters 1-3)
Do not change its shape under internal or external forces
Forces and moments can be plotted as a function of a position
”Nothing” happens within material

Deformable body (Chapters 4-12)
Can change its shape under internal or external forces
Inherent material properties must be accounted to find deformation
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A
F

Figure 1.2: The
force F is fully de-
termined by magni-
tude |F |, line of ac-
tion (dashed line),
direction and con-
tact point A.

Mechanics heavily relies on the notion of force. We
all intuitively understand this concept, and in physics,
force usually represents internal or external action on the
body. From a practical point of view, any force can be
represented as a vector F⃗ , and it is fully determined by
its magnitude |F |, line of action, direction and contact
point (Fig. 1.2).

Fig. 1.3a shows a rigid body subjected to multiple
forces. In engineering mechanics, every combination of
forces acting on the rigid body is called a force system.
Graphical representation of force vectors enables the
replacement of multiple forces acting on the body by a
single equivalent force called the resultant of the system.
Besides one important exception that will be discussed
later, every force system can be reduced to resultant via
a simple step-by-step procedure:

1. Pick two forces acting on the body;

2. Shift both forces along their corresponding acting
line to the point of intersection;

3. Replace these forces by their resultant (vector sum
of the initial forces);

4. Start all-over, until only one force is left;

5. The remaining force is the resultant of the initial
force system.

1F
2F

3F

4F
4-F

1F
2F

3F
3F

(a) (b) (c)

Figure 1.3: Reduction of the force system to the single resultant.

Fig. 1.3 illustrates this procedure for arbitrarily selected force system.
First, blue forces F4 cancel each other since they share the line of action, have
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the same magnitude and opposite directions (Fig. 1.3a). Then, by sliding
the forces F1 and F2 to the intersection point of their corresponding action
lines, we can get the resultant of F1 and F2 (red vector in Fig. 1.3b). Then,
the same procedure for this new resultant and initial force F3 gives us the
resultant of the whole system (green vector in Fig. 1.3c).

1.2 Force couples and moments

Two forces (Fig. 1.4a) cannot be reduced to a single resultant if they have

• Same magnitude

• Parallel lines of action

• Opposite directions

1F

2F
F

F

a
�

(a) (b)

Figure 1.4: (a) Two forces forming force couple. (b) Moment of the force
couple.

Such a force system is called a force couple or pure moment. If a resul-
tant represents the translation movement of the rigid body, a pure moment
corresponds to rotation. The moment of force couple is defined by direction
of rotation, magnitude and distance between corresponding lines of action
(Fig. 1.4b). Note that force moment is not fixed at any certain contact point
and can be moved freely over the whole body as long as the direction of
rotation and magnitude of the moment are conserved. In a general 3D system,
we can define the moment as cross product of two vectors

M⃗ = a⃗× F⃗1, (1.1)
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where a⃗ is a vector connecting the contact points of two vectors in force
couple, and F⃗1 is one of these vectors as shown in Fig. 1.4b. The vector
representation of moment enables us to define moment area |M⃗ | as

|M⃗ | = |⃗a× F⃗1| = |⃗a||F⃗1| sinα, (1.2)

where α is the angle enclosed by a⃗ and F⃗1. Note that by definition, the
moment area is always positive, however a specific sign can be assigned to
the moment depending on its direction.

F
B

a90o

Figure 1.5: Force F
exerts moment at a
point B.

A single force will exert a moment at a certain point
B outside from its line of action (Fig. 1.5). This
moment of single force is defined as a product of the force
magnitude |F | and the perpendicular distance a between
point B and the line of action (M = a|F |). Note that the
contact point of F and action point B cannot coincide.
The moment of a single force is sometimes called a torque.
It is important not to mix up moments generated
by force couple and by a single force.

The force couple
May induce a pure rotation of a body
Does not have a reference point

The single force
May induce a translation of the body
Exert a moment in a reference point outside its line of action

Now we understand how to work with forces and moments, and it is time
to define the last word in the definition given at the beginning of this chapter
– equilibrium.

A 2D force system is in equilibrium if the sum of all forces Fi and the
sum of all moments Mi equal zero.∑

i

Fi = 0 and
∑
i

Mi = 0 (1.3)
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Chapter 2

Bearings

2.1 Bearings and degrees of freedom

The condition of static equilibrium that we discussed earlier does not mean
that the body is immovable. The body still can translate and rotate; in a
two-dimensional case an object can have three kinematics degrees of freedom
(DoFs): two orthogonal translational displacements along x- and y- axes, and
one rotation around z-axis. The motion of the body can be restricted by
eliminating some DoFs with the help of bearings (Fig. 2.1). Depending on the
type of bearing, one, two, or all three DoFs can be removed. The kinematic
constraints imposed by bearings trigger so-called bearing reactions, or simply
reactions. Note that if exactly all degrees of freedom are removed, the system
is called statically determinate or isostatic.

As you can see, the sum of the number of reactions a and DoFs f is always
equal to 3 (for 2D case). This is a necessary (but not a sufficient!) condition
for a statically determinate system with one body. Namely,∑

i

a− 3 = 0 (2.1)

For more general 2D system with n connected bodies

n∑
i

ai +
∑

z − 3n = 0, (2.2)

where z is a number of intermediate reaction between movable bodies.

By knowing a number of bodies n, a number of bearing reactions a and
intermediate reactions z, we can distinguish three different cases for 2D force
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Hinge Two forces 2

1

2

3

1

2

1

0

One force

One force
One moment

Two forces
One moment

Linear

Fixed

Roller
hinge

Bearing Symbol Constraints No. of reactions
a

DOF
f

Figure 2.1: The most common types of bearings and corresponding number
of reactions a and degrees of freedom f .

systems defined by the value of D, where

D =
n∑
i

ai +
∑

z − 3n (2.3)

We know that a determinate (or isostatic) system must have D = 0 (Fig. 2.2b).
If D < 0, then the system is movable since it has unrestricted DoF (Fig. 2.2a).
If D > 0, then the system is called indeterminate or hyperstatic - the system
is immovable and contains extra reactions that can be removed (Fig. 2.2c).

Again, we need to emphasize that above-mentioned mathematical precon-
dition is a necessary, but not sufficient, requirement. One exception from this
rule is the system with two and one reactions in the left and right bearings re-
spectively shown in Fig. 2.3. Here, we have D = 0, which usually corresponds
to determinate system. However, it is clear that the beam can move freely
in a horizontal direction, therefore it has 1 DoF! In this specific case, force
vectors Y1 and Y2 are parallel, and they both can compensate only vertical
direction of action, while the horizontal movement is not restricted.
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2Y1Y

2Y
2X

1Y

D = -1

2Y
1Y

1X
D = 1

D = 0

1M

(a)

(b)

(c)

Figure 2.2: Movable (a), determinate (b) and indeterminate (c) force systems.

2Y
1Y

1M

Figure 2.3: Example of movable force system with D = 0. Parallel vertical
forces Y1 and Y2 cannot restrict horizontal movement of the beam.

2.2 Free body diagrams

Free body diagrams provide a way to compute forces acting inside the body
(internal force variables). By definition, an internal force variable is the
resultant of all internal forces in a solid body at a hypothetical cut through
the body (Fig. 2.4). If we imagine cutting the body in equilibrium along some
line, we technically create two fragments that are no longer in equilibrium.
Therefore we need to introduce additional forces on the cut to restore the
equilibrium and balance the forces. For a 2D system we can distinguish three
resultants on the cut: longitudinal force L (perpendicular to cut), trans-
verse/shear force Q (in plane of cut) and bending moment M (perpendicular
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to the 2D area of force system). Together with reactions, internal force
variables can be determined using a free body diagram.

z
x

cu
t

z
x LZ

LX

RX
LM RM

RZ

(a)

(b)

Figure 2.4: Internal forces at a hypothetical cut through the body. Note that
forces and moment on left and right sides of the cut compensate each other
to maintain equilibrium.

By hypothetically splitting the beam into two fragments, we add six
internal force variables on the cut (three for left and three for right) that
balance both fragments. To keep the whole body in equilibrium after ”gluing”
these two fragments back, the internal force variables on the left and right
should have the same amplitude and opposite directions. Therefore, by cutting
the beam, we increase the number of bodies to n = 2, however, we also add
three intermediate reactions z, therefore keeping D constant (Eq. 2.3)

Note: To correctly operate with internal force variables, we need to agree
on non-ambiguous sign conventions. We will obey the following rules

• An intersection area is called positive if normal vector is in the
direction of coordinate vector, and negative otherwise;

• Internal force variable (force or moment) is positive if it is located at
a positive intersection area AND if it is in direction with a coordinate
vector;

• The moment is regarded as a vector according to the right-hand
rule;
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• Note that the reactional internal force variable at the corre-
sponding negative intersection is also considered as positive.

1Z

1X1M

F
45o

a

1Z

1X1M

F
45o

2Z

2X 2M

2Z

2X2M

a/2 a/2

(a)

(b)

Figure 2.5: Reaction forces and moments in the beam fixed on the left side
and subjected to inclined point load on the right.

For illustration, we consider an example of a beam with length a, that is
fixed on the left end and subjected to an inclined point load F on the right
end (Fig. 2.5). We search for the bearing reactions as well as internal forces
in the middle point of the beam. Simply balancing forces and moments we
get

X1 = F/
√
2

Y1 = F/
√
2

M1 = −Fa/
√
2

(2.4)

To find the internal forces and moments at the middle of the beam, we need
to cut the beam into two fragments, introduce two reaction forces X2 and Z2

and one reaction moment M2 to preserve equilibrium. Finally, by balancing
the forces for both fragments we get

X2 = F/
√
2

Y2 = F/
√
2

M2 =
Fa

2
√
2

(2.5)
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Chapter 3

Internal forces

3.1 Internal force variables

In the previous chapter, we considered internal forces appearing on the
hypothetical cuts. Here we continue discussing internal force variables but
with a focus on describing them as a continuous function of the position along
the body. From the previous example (Fig. 2.5), we know how to find the
internal forces in the middle of the beam (Eq. 2.5). However, we can also
perform the same procedure for any other section of the beam. Therefore, it
makes sense to consider the reaction forces and moments as functions of the
coordinate along the beam length (Fig. 3.1).

1Z

1X1M

F
45o

Q(x) Q(x)

N(x) M(x)

x a-x

M(x) N(x)

x a

M(x) N(x) Q(x)

(a)

(b)

Figure 3.1: (a) Free body diagram for a beam with intermediate cut. (b)
Reaction forces and moments as functions of coordinate x.

Let us consider a cut located at the distance x from the left hinge/wall
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(Fig. 3.1). By balancing forces and moments acting on the left and right
fragments, it is easy to show that

N(x) = F/
√
2

Q(x) = F/
√
2

M(x) =
F (a− x)√

2

(3.1)

Therefore, both longitudinal and shear forces are constant functions of
the coordinate x, while moment linearly decreases with an increase in x.

3.2 Distributed loads

Prior to this moment, we have considered only idealized point forces. Now we
will consider loads distributed along the region of the body (line loads). We
will learn how to search for internal forces without exact knowledge of the
reaction forces and move towards governing equation of continuum mechanics
in the next Chapter.

Note: In our next derivations, we will heavily rely on a very useful
mathematical concept of Taylor expansion of the function. If we have
arbitrary function f(x), then we can try to approximate it in the vicinity
of point x0 using a polynomial function. So we can find the approximate
value of f(x + ∆x) just knowing the properties of the function in the
point x0. We will skip the strict mathematical discussion of the necessary
conditions and restrictions on function f and value of ∆x, and just claim
that for a small enough ∆x and well-behaved function f , the Taylor
expansion provides a good approximation of f . For example, the second
order approximation of f(x+∆x) can be expressed as

f(x0 +∆x) = f(x0) + ∆xf ′(x0) +
1

2
∆x2f ′′(x0) +O(∆x3) (3.2)

In shorter form the general Taylor expansion can be written as

f(x0 +∆x) =
∞∑
i=0

1

n!
f (i)(x0)∆x

i (3.3)

Note, that f (i) means i−th derivative of the function, while ∆xi is a
regular power.
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q(x)

A B

dx
x x+dx

dF = q(x)dx

Q

M

Q+dQ

M+dM

(a) (b)

Figure 3.2: (a) A beam subjected to distributed load. (b) Infinitesimal
fragment of beam and corresponding forces.

Let us consider a straight beam subjected to line load that can be expressed
as a function of the coordinate q(x) (Fig. 3.2). We select a very small
(infinitesimal) beam element of length dx stretching from coordinate x to
x+dx. Note that here we use dx instead of ∆x to emphasize the infinitesimal
length of this piece. Due to that dx << (dx)2, and we can use the first
order Taylor expansion to find the change in total applied force between
left and right ends of the selected beam as dF = q(x)dx. Let us now write
equilibrium equation for the small piece, taking into account that we can
express the shear force and moment on the right side as Q(x+ dx) = Q+ dQ
and M(x+ dx) =M + dM respectively.

Q(x) + dQ = Q(x)− q(x)dx (3.4)

We also can write Taylor expansion of Q(x) at x as

Q(x) + dQ = Q(x) +
dQ

dx
dx+ ... (3.5)

By comparing coefficients in these two equations, we conclude that

q(x) = −dQ
dx

(3.6)

This equation establishes the relation between line load and internal shear
force in the body. To balance moments, we write

M(x) + dM =M(x) +Q(x)dx (3.7)

Similar to force, we can obtain the first order Taylor expansion and get

q(x) = −d
2M

dx2
(3.8)
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Therefore, we can express Q(x) and M(x) via integration as

Q(x) = −
∫
q(x)dx+ C1

M(x) =

∫
Q(x)dx+ C2

(3.9)

Integration constants C1 and C2 have to be found from boundary conditions
at bearings and intermediate conditions at connections between body parts.
Boundary conditions depend on the bearing type. For example, simple hinge
implies M = 0, and free end provides two boundary conditions M = 0 and
Q = 0 simultaneously. Note that by computing shear force and moment via
integration (Eq. 3.9), we do not need to calculate bearing reactions at all.
If we recall Fig. 2.1 describing the different types of hinges, we can notice
that each degree of freedom corresponds to additional equality boundary
conditions that can be used to find integration constants (Eq. 3.9).
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Chapter 4

Elastostatic equilibrium

Note: We will make extensive use of vector and tensor calculus in this
and the following chapters, and it is important to clearly lay out the
mathematical notation used here.

Given a function f(x, y), we write the partial derivative of this function
with respect to x as

∂f

∂x
= ∂xf = f,x. (4.1)

All variables following a comma in a subscript are derivatives. The second
derivative with respect to x is then

∂2f

∂x2
= ∂2xf = f,xx. (4.2)

Mixed derivatives are written as

∂2f

∂x∂y
= ∂x∂yf = f,xy. (4.3)

The total derivative is indicated with the letter d, e.g.

df

dt
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
= f,xx,t + f,yy,t (4.4)

for f = f(x, y), x = x(t) and y = y(t).
Sometimes the prime is used to indicate a derivative, e.g. f ′(x) =

df/ dx is the derivative of f . It is also common to indicate the derivative
with respect to time by a dot, i.e. given f(t) the derivative ḟ(t) = df/ dt.
Higher order derivatives are sometime indicated by the order in parentheses,
e.g. f (n)(x) = dn f/ dxn – for n = 2 giving f ′′(x) = f (2)(x) = d2 f/ dx2.
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We will use these notations occasionally for brevity but point out that
writing the differential operator explicitly is less ambiguous. In particular,
for functions of more than one variable the differential operator allows us
to distinguish clearly between total and partial derivatives.

We will also make use of Einstein summation. Einstein summation is
an implicit summation over repeated indices (i.e. a summation where the∑

-sign is omitted). As a simple example, consider the total derivative of
a function f(r⃗) with r⃗ = (x, y) equivalent to Eq. (4.4). We can write this
as

df

dt
= f,xrx,t + f,yry,t =

∑
i=x,y

f,iri,t = f,iri,t (4.5)

where in the right hand side the sum is implicit because the index i is
repeated. We will come back to this notation when discussing explicit
examples below.

We use explicit arrows, v⃗ to indicate first-order tensors (vectors) and
underline second-order tensors (matrices), M . A fourth-order tensor is
underlined twice, C. Unit vectors (vector of length one) are denoted by
a hat, n̂. Note that we chose this notation over using, e.g., bold font
to indicate vectors because it is blackboard friendly. It can be used on
blackboards and typeset notes alike.

4.1 Stress and static equilibrium

We will treat elasticity exclusively in the limit of small or infinitesimal strains
where all equations are linear. The generalization of this “small strain” theory
is “finite strain” elasticity which we will not treat in this class. Note that
linear elasticity is a classical field theory, this means all quantities typically
depend continuously on positions r⃗. Those quantities are called fields.

The central quantities of small strain elasticity are the (Cauchy) stress
field σ(r⃗) and the displacement field u⃗(r⃗). Given a material point has moved
from position r⃗ to r⃗′, the displacement field is u⃗(r⃗) = r⃗′ − r⃗. It therefore
describes by how much a volume element in our deformed material has moved
(or displaced) because of the deformation. The stress σ is a tensor that

transforms an area (vector) A⃗ into a force vector F⃗ ,

F⃗ = σ · A⃗ (4.6)

Note that the area here is a vectorial quantity; the direction of this area vector
points outwards on that area, i.e. A⃗ = An̂ where n̂ is the normal vector on
the respective area.
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In three-dimensions, the stress tensor is represented by a 3× 3 matrix. A
tensor describes a linear relationship between two quantities; the stress tensor
describes the relationship between area of a virtual plane in our solid and
the force acting on it, Eq. (4.6). The fact that both force and normal vector
of the area are represented in a certain coordinate system implies certain
properties of the tensors, in particular for the transformation of the elements
of the tensor under rotation of this coordinate system. We will discuss those
in detail in the next chapter. For the remainder of this chapter, we only need
property Eq. (4.6) of the stress tensor.

4.2 Force equilibrium

We will now consider the equilibrium of forces inside a solid body. Specifically,
we regard a small volume element inside this body. Figure 4.1a shows a sketch
of some body with a volume element highlighted in red. If side lengths of
the element ∆x, ∆y and ∆z are small enough, then the forces on opposite
sites of the element must balance. We here denote the forces on the faces
perpendicular to the x-direction by X⃗, the forces on the y-faces by Y⃗ and
the forces on the z-faces by Z⃗ (see Fig. 4.1b, z-direction not shown). If we
know the areas, we can get the forces from the stress tensor σ (that converts
areas into forces, see Eq. (4.6)), specifically

X⃗ =

σxx∆y∆zσyx∆y∆z
σzx∆y∆z

 (4.7)

Y⃗ =

σxy∆x∆zσyy∆x∆z
σzy∆x∆z

 (4.8)

Z⃗ =

σxz∆x∆yσyz∆x∆y
σzz∆x∆y

 . (4.9)

Note that X⃗, Y⃗ , Z⃗ and σ are fields; they explicitly depend on position r⃗
within the body.

For a volume element located at position r⃗ = (x, y, z), force equilibrium

16
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Figure 4.1: Force equilibrium in a small volume element inside a solid body.

inside the element can be expressed as

X⃗(x+∆x, y, z)− X⃗(x, y, z) + Y⃗ (x, y +∆y, z)− Y⃗ (x, y, z)

+ Z⃗(x, y, z +∆z)− Z⃗(x, y, z) = F⃗ (x, y, z)

(4.10)

where F⃗ (x, y, z) is an external force, often called the body force, acting on the
volume element. We can insert Eqs. (4.7), (4.8) and (4.9) and divide by the
volume of the element ∆x∆y∆z to obtain

σxx(x+∆x, y, z)− σxx(x, y, z)

∆x
+
σxy(x, y +∆y, z)− σxy(x, y, z)

∆y

+
σxz(x, y, z +∆z)− σxz(x, y, z)

∆z
= fx(x, y, z)

(4.11)

for the x-component of Eq. (4.10). Here fx = Fx/∆x∆y∆z is a volume force.
In the limit ∆x→ 0 and ∆y → 0 this becomes

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= fx. (4.12)

From the y and z-component of Eq. (4.10) we get two more differential
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equations,

∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

= fy (4.13)

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

= fz. (4.14)

These can be summarized to the compact notation

∇ · σ ≡ divσ = f⃗ , (4.15)

or in word: The divergence of the stress tensor equals the body force. Equa-
tion (4.15) is the central expression of elastostatics that describes force balance
within a solid body.

Note: The differential operators in tensor calculus are defined by means
of the nabla operator ∇. In an n-dimensional Euclidean space equipped
with Cartesian coordinates it reads

∇ =

(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)
=

n∑
i=1

êi
∂

∂xi
, (4.16)

where êi is the unit vector pointing in the i-th cartesian direction. When
applies to a second-rank tensor, our divergence operator “acts on the
right”, i.e. ∇·σ = σij,j – the derivative is taken with respect to the second
index. This is entirely a convention and you may encounter textbooks or
publications where a different convention is applied.

An alternative derivation of force balance invokes the divergence theorem.
We can integrate Eq. (4.15) over a volume element inside this body of volume
V and surface area S(V ). Using the divergence theorem (sometimes also
called Gauss’ theorem), we obtain∫

V

d3 r∇ · σ =

∫
S(V )

d2 r σ · e⃗S =

∫
S(V )

d2 r dF⃗ =

∫
V

d3 r f⃗ (4.17)

where e⃗S is the normal vector pointing outwards on S(V ). The infinitesimal
area vector e⃗S d

2 r is hence transformed into an (infinitesimal) force vector

dF⃗ = σ · e⃗S d2 r and integrated over. Eq. (4.17) hence contains a sum over all
forces acting on the surface of the volume element V , and these forces must
sum to the body force. It is nothing else than a statement of force balance
for any volume element within the solid body.
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Note: The divergence theorem is an important result of vector analysis.
It converts an integral over a volume V into an integral over the surface S
of this volume. For a vector field f⃗(r⃗), the divergence theorem states that∫

V

d3 r∇ · f⃗(r⃗) =
∫
S

d2 r f⃗(r⃗) · n̂(r⃗) (4.18)

Here, n̂(r⃗) is the normal vector pointing outward on the surface S of the
volume V .

Note: Note that ∇ · σ ≡ div σ. Sometimes it is useful to make use
of Einstein summation, i.e. implicit summation over repeated indices
within the same quantity of in products. Examples are: ∇ · σ = ∂jσij =∑

j ∂jσij, 3σh = σkk =
∑

k σkk = tr σ, where σh is the hydrostatic stress.
In the solid mechanics literature, derivatives are often expressed as indices
following a comma. For example, the derivative of the function f(x, y, z)
with respect to x would be written as f,x. In this notation, Eq. (4.15)
becomes ∇ · σ = ∂jσij = σij,j = 0. By virtue of the Einstein summation
convention we need to sum over the repeated index i in the right hand
side expression. Vector/tensor and component notation with Einstein
summation will be used intermixed throughout these notes.

4.3 Moment equilibrium

Besides equilibrium of forces, we also need to fulfill the equilibrium of moments
acting on the volume element. The moment around the z-axis is given by

Yx∆y +Xy∆x = 0 (4.19)

which immediately implies σyx = σxy. The moment equilibrium around the
x- and y-axes leads to conditions on the other off-diagonal components of σ,
σzx = σxz and σzy = σyz. By virtue of moment balance, the stress tensor is a
symmetric tensor, σij = σji or σ = σT .
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Chapter 5

Stress

Note: We have encountered vectors in the first chapters on statics of rigid
bodies and have intuitively worked with them. To recap, a vector is an
object that represents a direction and a magnitude. Geometrically, they
are often represented as arrows. In a Cartesian coordinate system (or
basis), a vector can be represented by a set of numbers. For example in
two dimensions, we denote the components of the vector v⃗ as the x and y
components and typically write the vector in the column-form

v⃗ = vxx̂+ vyŷ ≡

(
vx
vy

)
(5.1)

where vx and vy are real numbers that are called the components of the
vector v⃗. x̂ and ŷ are vectors of unit length that point along the x- and
y-directions of the coordinates. The length of the vector is given by the
2-norm |v⃗| ≡ ∥v⃗∥2 = (v2x + v2y)

1/2.
It is important to emphasize that this is a representation of the vector

and the components vi ∈ R depend on the specific basis x̂ and ŷ. This
representation is called a tensor of order 1. The order of a tensor is
sometimes also called degree or rank. Any component-wise representation,
such as the one on the right hand side of Eq. (5.1), implies a basis. The
basis is written explicitly as x̂ and ŷ in the middle expression of Eq. (5.1).
Note that in component notation, the basis vectors are

x̂ =

(
1
0

)
and ŷ =

(
0
1

)
. (5.2)

We will restrict the discussion here to orthogonal bases where x̂·ŷ = 0. The
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discussion here will use two-dimensional examples, but a generalization to
more that two dimensions is straightforward

Formally, a vector is an element of a vector space. A vector space
V (often also called a linear space) is a set of objects (for example the
set containing our basis vectors x̂ and ŷ and linear combinations thereof)
along with two operations: Addition (of two vectors) and multiplication
(of a vector) with a scalar. These operations again yield a vector, i.e. an
element of V . This can be expressed as

• u⃗, v⃗ ∈ V , then u⃗+ v⃗ ∈ V

• a ∈ R and u⃗ ∈ V , then a · u⃗ ∈ V

and hence Eq. (5.1) yields a vector. In general, we may multiply the
vectors by an element of a algebraic number field F rather than R. Then
we say V is a vector space over the field F. In these notes (and our
lectures) we will always deal with either real (F = R) or complex (F = C)
numbers.

Recall the concept of an algebraic number field in mathematics. A field
is an algebraic structure that is a set along with two operations “+” and
“·” associating an element with two elements of the set. The operations
are required to satisfy the field axioms:

• Associativity of addition and multiplication: a+(b+ c) = (a+ b)+ c
and a · (b · c) = (a · b) · c.

• Commutativity of addition and multiplication: a+ b = b+ a and
a · b = b · a.

• Additive and multiplicative identity: 0 ∈ F with a+0 = a and 1 ∈ F
with 1 · a = a.

• Additive inverses: ∀a ∈ F we have an inverse element i = −a with
a+ i = a+ (−a) = 0

• Multiplicative inverses: ∀a ≠ 0 we have an element a−1 with a·a−1 =
1.

• Distributivity of multiplication over addition: a · (b+ c) = a · b+ a · c

Note that in physics a field is typically a quantity that depends on position
and not an algebraic number field. A scalar field ϕ(r⃗) would be scalar
quantity ϕ ∈ R that depends on a vector (the position) r⃗ ∈ V . While
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these two meanings of the term field exist, we will always refer to this
latter physical meaning in the following. Additionally, we have here used
the dot · to indicate a scalar multiplication, but we will reserve this dot
in the rest of these notes for contractions, i.e. operations that implicitly
include a sum.

The simplest (and also most important) operation on a vector is a linear
transformation. The simplest linear transformation is the multiplication
with a scalar a ∈ R. In terms of the geometric interpretation of a vector,
this multiplication would change the length of the vector by a but not its
direction.

A general linear transformation can in addition change the direction of
the vector and therefore represent for example rotations. Given a vector
u⃗ and a scalar α, a linear transformation L to a vector u⃗′ = Lu⃗ has the
properties:

L(αu⃗) = αLu⃗ (5.3)

L(u⃗+ v⃗) = Lu⃗+ Lv⃗ (5.4)

We will only deal with linear operations that map between the same
vector space V , L : V 7→ V . (It may map between quantities with different
physical units.) Given a component-wise (Cartesian) representation of
a vector, Eq. (5.1), a linear transformation can be expressed as a mul-
tiplication by a matrix. This is easily by applying Eqs. (5.3) and (5.4)
to

w⃗ = Lv⃗ = L(vxx̂+ vyŷ) = vxLx̂+ vyLŷ. (5.5)

We can express any element of our vector space as a linear combination
of the basis vectors, hence also

Lx̂ = Lxxx̂+ Lyxŷ (5.6)

Lŷ = Lxyx̂+ Lyyŷ. (5.7)

Application of the linear operation to an arbitrary vector, Eq. (5.5), can
therefore be expressed as

w⃗ = Lv⃗ = (Lxxvx + Lxyvy)x̂+ (Lyxvx + Lyyvy)ŷ ≡ L · v⃗ (5.8)

where L · v⃗ is the multiplication of the matrix L with the vector v⃗. A
matrix is therefore a representation of a linear operation. Note that
from Eq. (5.6) it is straightforward to see that formally we obtain the
components of the matrix from

Lij = î · Lĵ. (5.9)
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Here the · indicates the inner product or contraction of two vectors.
In component-wise notation we can express Eq. (5.8) as

wi =
∑
j=x,y

Lijvj ≡ Lijvj (5.10)

where the last term on the right-hand side uses the Einstein summation
convention. In this convention, a summation over repeated indices within
the same quantity or in products is implicit. This summation is also often
called a contraction and in dyadic notation it is indicated by a centered
dot, e.g. w⃗ = L · v⃗.

It is straighforward to “convert” from dyadic notation to component-
wise or index notation. Imagine the i, j component of the resultant matrix
of the product

[A ·B · C]ij = AikBklClj. (5.11)

Converting from the dyadic notation to index notation involves identifying
the indices of the resultant (first index of the first matrix in the product
i and last index of the last matrix in the product j) and introducing
repeated indices for the summation. These indices, k and l in the example,
always sit next to each other and are the indices that are contracted. The
advantage of the index notation is that it is unambiguous, but it may
hide the physical structure of the underlying operations. In these notes,
we will therefore intermix “dyadic” notation as in Eq. (5.8) and index
notation as appropriate.

Note that there is also a double contraction, for example

σij = Cijklεkl, (5.12)

that in dyadic notation we would indicate with two dots: σ = C : ε. Each
dot therefore represents a sum over some (hidden) index.

5.1 Rotating the stress tensor

5.1.1 Rotating vectors

A rotation R is a linear operation that does not affect the length (or norm)
of the vector, |Rx⃗| = |x⃗|. Note that if R is represented by a matrix R, then

|R · x⃗| = (RijxjRikxk)
1/2 = (xjR

T
jiRikxk)

1/2 =
(
x⃗ ·RT ·R · x⃗

)1/2
(5.13)
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which is is equal to |x⃗| only if RT ·R = 1, i.e. if R is an orthogonal matrix.
Here the superscript T indicates the transpose operation, RT

ij = Rji, and 1

is the unit matrix. Note that this relationship implies R−1 = RT , i.e. the
inverse of an orthogonal matrix is simply its transpose.

Let us assume we want to rotate from a coordinate system (basis vectors)
x̂ and ŷ to the primed coordinate system x̂′ and ŷ′. Then the rotation should
transform the basis vectors of the unprimed into the primed system,

Rx̂ = x̂′ and Rŷ = ŷ′. (5.14)

From Eq. (5.9) we obtain the components of the rotation matrix as

R =

(
Rxx Rxy

Ryx Ryy

)
=

(
x̂ · Rx̂ x̂ · Rŷ
ŷ · Rx̂ ŷ · Rŷ

)
=

(
x̂ · x̂′ x̂ · ŷ′
ŷ · x̂′ ŷ · ŷ′

)
. (5.15)

If all vectors are expressed in the coordinate system x̂ and ŷ, then those
vectors have the simple representation given by Eq. (5.1) and the rotation
matrix can be written as

R = (x̂′, ŷ′), (5.16)

i.e. we just stack the basis vectors as columns together to obtain R. This is a
simple prescription to construct the rotation matrix given the basis vectors
of the rotated coordinate system (in terms of the original coordinate system).
It is straightforward to see that R is an orthogonal matrix,

RT ·R =

(
x̂′ · x̂′ x̂′ · ŷ′
ŷ′ · x̂′ ŷ′ · ŷ′

)
= 1, (5.17)

if x̂′ and ŷ′ are orthogonal vectors of unit length.
The basis vectors of a coordinate system rotated counterclockwise by an

angle θ are given by

x̂′ =

(
cos θ
sin θ

)
and ŷ′ =

(
− sin θ
cos θ

)
(5.18)

and hence the rotation matrix is

R =

(
cos θ − sin θ
sin θ cos θ

)
. (5.19)

It is straightforward to verify that indeed RT ·R = 1.
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5.1.2 Rotating tensors

A tensor is a representation of a linear transformation: A tensor of order 2
(a matrix) transforms a tensor of order 1 (a vector) into another tensor of
order 1. We have already encountered the Cauchy stress tensor σ of solid
mechanics. It transforms an area vector A⃗ into a force vector F⃗ ,

F⃗ = σ · A⃗ or in index notation Fi = σijAj. (5.20)

We describe F⃗ , A⃗ and σ in terms of their components, i.e. we describe a
realization of the linear transformation (and the area and force vectors).

A rotation does not affect the effect of the linear transformation. Hence,
if we change the coordinate system from x̂, ŷ to x̂′, ŷ′, then the component of
our vector F⃗ change to

F ′
x = F⃗ · x̂′ = Fxx̂ · x̂′ + Fyŷ · x̂′ (5.21)

F ′
y = F⃗ · ŷ′ = Fyx̂ · ŷ′ + Fyŷ · ŷ′. (5.22)

Comparing with Eq. (5.19) yields the compact notation

F⃗ ′ = RT · F⃗ or in index notation F ′
i = FjRji. (5.23)

Note that the transpose shows up because R describes the rotation of the
basis and we are here rotating a vector expressed within this basis, which is
the inverse operation.

Since we now understand how to rotate vectors, we can ask the question
of how to rotate a tensor of order 2. Starting from Eq. (5.20) and using the
inverse of Eq. (5.23), we write

R · F⃗ ′ = σ ·
(
R · A⃗′

)
, (5.24)

and multiply by RT from the left to yield

F⃗ ′ =
(
RT · σ ·R

)
· A⃗′. (5.25)

In the rotated coordinate system, the tensor attains the representation

σ′ = RT · σ ·R or in index notation σ′
ij = σklRkiRlj (5.26)

since this leave the expression for the linear transformation

F⃗ ′ = σ′ · A⃗′. (5.27)
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invariant. The trace and determinant of the rotated tensor are

trσ′ = tr
(
RT · σ ·R

)
= tr

(
R ·RT · σ

)
= trσ (5.28)

detσ′ = det
(
RT · σ ·R

)
= det

(
R ·RT · σ

)
= detσ (5.29)

and hence invariant under rotation. Note that in general for an n× n tensor,
there are n invariants; more on this will be discussed below when talking
about eigenvalues.

Since we now understand how to rotate tensors of order 2, we can ask
the question how to rotate a tensor of order 4. As an example, we use the
stiffness tensor C, that we will encounter in the next chapter. This tensor
transforms a strain tensor ε into a stress tensor σ,

σ = C : ε or in index notation σij = Cijklεkl. (5.30)

We can rewrite this using the inverse of Eq. (5.26) as

R · σ′ ·RT = C :
(
R · ε′ ·RT

)
or RikRjlσ

′
kl = CijklRkmRlnε

′
mn, (5.31)

which we now multiply from the left with RT and from the right with R. This
gives

σ′
ij = CmnopRmiRnjRokRplε

′
kl, (5.32)

and hence the transformation rule

C ′
ijkl = CmnopRmiRnjRokRpl. (5.33)

Quantities that transform as Eqs. (5.23), (5.26) and (5.33) are called tensors.

5.2 Principal stresses

Let us discuss in more detail what happens if we rotate a symmetric tensor of
order 2, i.e. a tensor that fulfills σT = σ. From Eq. (5.26) it is straightforward
to see, that σ′T = σ′, i.e. the transformed tensor is also symmetric.

We now explicitly write the rotation for the tensor

σ =

(
σxx σxy
σxy σyy

)
, (5.34)
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using the rotation matrix Eq. (5.19). This gives symmetric σ′ = RT · σ · R
with the components

σ′
xx =

1

2
(σxx + σyy) +

1

2
(σxx − σyy) cos 2θ + σxy sin 2θ (5.35)

σ′
yy =

1

2
(σxx + σyy)−

1

2
(σxx − σyy) cos 2θ − σxy sin 2θ (5.36)

σ′
xy = −1

2
(σxx − σyy) sin 2θ + σxy cos 2θ. (5.37)

There is a specific rotation angle θ0 where the diagonal elements σ′
xx and σ′

yy

become extremal. It is determined from σ′
xx,θ = σ′

yy,θ = 0,

tan 2θ0 =
2σxy

σxx − σyy
. (5.38)

At this rotation angle we find that the off-diagonal components vanish,
σ′
xy(θ0) = 0, and the rotated matrix is diagonal,

σ =

(
σ1 0
0 σ2

)
, (5.39)

with diagonal elements

σ1 =
σxx + σyy

2
+

[(
σxx − σyy

2

)2

+ σ2
xy

]1/2
(5.40)

σ2 =
σxx + σyy

2
−

[(
σxx − σyy

2

)2

+ σ2
xy

]1/2
. (5.41)

This is the simplest example of the diagonalization of a matrix. The elements
of the diagonalized Cauchy stress tensor, σ1 and σ2, are called the principal
stresses.

The diagonalization of a symmetric matrix always corresponds to the
rotation into a new coordinate system. We have explictly shown this for the
two-dimensional case here and will now show it in more generality for the
three-dimensional case. In this process, we will encounter the concept of a
stress invariant.

5.3 Stress invariants

Equation (5.39) fulfills the eigenvalue equations σ · x̂ = σ1x̂ and σ · ŷ = σ2ŷ.
Rather than explicitly computing a rotation, we can ask the question whether
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we can find a scalar λ and a vector v⃗ that fulfills the eigenvalue equation

σ · v⃗ = λv⃗. (5.42)

This equation of course has the trivial solution v⃗ = 0. It can only have a
nontrivial solution if

det (σ − λ1) = 0. (5.43)

For a n× n matrix, Eq. (5.43) leads to a polynomial of order n in λ with n
(possibly complex valued) solutions.

For the case of a symmetric 3×3 matrix, we can write this down explicitly
as

det

σxx − λ σxy σxz
σxy σyy − λ σyz
σxz σyz σzz − λ

 = −λ3 + I1λ
2 − I2λ+ I3 = 0 (5.44)

with

I1 = trσ = σxx + σyy + σzz (5.45)

I2 = σyyσzz + σxxσzz + σxxσyy − σ2
yz − σ2

xz − σ2
xy (5.46)

I3 = detσ (5.47)

The quantities I1 to I3 are called invariants. We have shown above explicitly
that the trace and the determinant are invariant under rotation. The same
holds true for all coefficients of the characteristic polynomial (two of which
are actually trace and determinant). This is because

det
(
RT · σ ·R− λ1

)
= det

[
RT · (σ − λ1) ·R

]
= det (σ − λ1) . (5.48)

The 3-dimensional tensor therefore has three invariants. These invariants
have important physical interpretations. For the stress tensor, I1 is related to
the hydrostatic stress and I2 to the shear stress.

Note that for a diagonal matrix,

σ′ =

σ1 0 0
0 σ2 0
0 0 σ3

 , (5.49)

the invariants are

I1 = σ1 + σ2 + σ3 (5.50)

I2 = σ1σ2 + σ1σ3 + σ2σ3 (5.51)

I3 = σ1σ2σ3. (5.52)
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By equating Eqs. (5.45) to (5.47) with Eqs. (5.50) to (5.52) we can calculate
the eigenvalues σ1, σ2 and σ3.

Once we have computed the eigenvalues, we can obtain the corresponding
eigenvectors by solving

σv⃗1 = σ1v⃗1, σv⃗2 = σ2v⃗2, and σv⃗3 = σ3v⃗3. (5.53)

Note that the expressions only determine the direction of v⃗i, not its length,
and we are free to require |v⃗i| = 1. Furthermore, let us regard scalar products
v⃗1 · v⃗2, then

σ1v⃗1 · v⃗2 = (σ · v⃗1) · v⃗2 = v⃗1 · (σT · v⃗2) = v⃗1 · (σ · v⃗2) = σ2v⃗1 · v⃗2 (5.54)

and if σ1 ̸= σ2 we must have v⃗1 · v⃗2 = 0. Hence the eigenvectors of a symmetric
matrix are orthonormal, or in other words, they form the basis of a coordinate
system.

We can write Eq. (5.53) in the more compact notation

σ ·R =

σ1 0 0
0 σ2 0
0 0 σ3

 ·R (5.55)

with R = (v⃗1, v⃗2, v⃗3). Multiplying from the left with R−1 = RT (this holds
because the eigenvectors are orthonormal) we get

RT · σ ·R =

σ1 0 0
0 σ2 0
0 0 σ3

 . (5.56)

This is nothing else than a coordinate transformation (rotation) of the tensor
σ. Since the diagonalization of a symmetric matrix leads to orthonormal
eigenvectors, the diagonalization is a rotation of the coordinate system.

5.4 Hydrostatic and deviatoric stress

We call σh = trσ/3 = I1/3 the hydrostatic stress. It is the stress measure
that tells us about volume expansion and contraction. The pressure is the
negative of the hydrostatic stress, p = −σh. Our sign convention is such
that positive stresses (negative pressures) mean tension and negative stresses
(positive pressures) compression.
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Using the hydrostatic stress, we can construct yet another stress tensor
that quantifies the deviation from a pure hydrostatic condition with stress
σh1. We define

s = σ − σh1, (5.57)

the deviatoric stress. Note that this tensor is constructed such that tr s = 0.
The invariants of the deviatoric stress are commonly denoted by the symbol

J . We already know that J1 = 0 by construction. The second invariant is
given by

J2 =
1

6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2
]

=
1

6

[
(σxx − σyy)

2 + (σyy − σzz)
2 + (σxx − σzz)

2 + 6(σ2
xy + σ2

yz + σ2
xz)
]
.

(5.58)

From this invariant we can derive the von-Mises stress σvM =
√
3J2. The

von-Mises stress characterizes the pure shear contribution to the stress. The
second invariant of the deviatoric stress plays an important role in plasticity
models, where it is often assumed that a material flows when the von-Moses
stress exceeds a certain threshold.
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Chapter 6

Strain and displacement

6.1 Displacement

The displacement field u⃗(r⃗) describes how a point on our solid body moves
during deformation. For a rigid body u⃗ ≡ 0, but for a deformable body we
obtain finite displacements during deformation. The point r⃗ then moves to
the point r⃗′(r⃗) = r⃗ + u⃗(r⃗). The displacement field u⃗(r⃗) = r⃗ − r⃗′(r⃗) is hence
the difference of the deformed (“displaced”) point to its reference position r⃗.
Note that the displacement field itself is defined as a function of this reference
position r⃗.

6.2 Strain

The strain field in the small strain approximation is given by the symmetrized
gradient of u⃗(r⃗),

ε(r⃗) =
1

2

(
∇u⃗+ (∇u⃗)T

)
. (6.1)

The left hand side of Eq. (6.1) contains the gradient of a vector field, ∇u⃗,
which is a second rank tensor,

∇u⃗ =


∂ux

∂x
∂ux

∂y
∂ux

∂z
∂uy

∂x

∂uy

∂y

∂uy

∂z
∂uz

∂x
∂uz

∂y
∂uz

∂z

 , (6.2)

whose components are given by [∇u⃗]ij = ∂ui/∂rj = ui,j. It is not the
divergence, ∇· u⃗ which would give a scalar. This potential source of confusion
can be avoided by writing the equation in the component-wise notation,

εij =
1

2
(∂iuj + ∂jui) =

1

2
(uj,i + ui,j). (6.3)
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(Note that these expression do not contain a sum since there is no repeated
index.)

The geometric interpretation of the strain is that is converts a vector r⃗
that has a direction and length into the change this vector undergoes under
deformation: u⃗ = ε · r⃗ with the new (transformed) vector r⃗′ = r⃗ + u⃗ =
(1 + ε) · r⃗. In terms of thinking about tensors as a representation of a linear
transformation, the strain tensor transforms a position into a displacement.
The strain tensor is dimensionless.
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Chapter 7

Hooke’s law

7.1 General form

In order to compute the deformation of an elastic body, we need a constitutive
relation (material law) to close the equations of elastostatic equilibrium,

∇ · σ = 0 and ε(r⃗) =
1

2

(
∇u⃗+ (∇u⃗)T

)
. (7.1)

Since we will be working in linear elasticity, the constitutive equation is a
linear relationship between σ and ε. The most general form of this linear
relationship is

σ = C : ε, or using Einstein summation σij = Cijklεkl. (7.2)

It is called Hooke’s law. The quantity C is a fourth order symmetric tensor
of elastic constants that contains at most 21 independent elastic moduli. To
see that there are only 21 independent coefficients, it is useful to remove the
symmetric entries from σ and ε and express them as 6-vectors in what is
called Voigt notation,

σ⃗ = (σxx, σyy, σzz, σyz, σxz, σxy) (7.3)

and
ε⃗ = (εxx, εyy, εzz, 2εyz, 2εxz, 2εxy). (7.4)

Then σ = C · ε⃗ where C is a 6×6 symmetric matrix called the stiffness matrix
containing the above-mentioned 21 independent elastic constants. (There are
6 · 6 = 36 components, but the matrix is symmetric.)

Note that the off-diagonal components of σ are often denoted by τxy ≡
σxy, τxz ≡ σxz and τyz ≡ σyz. The off-diagonal components of ε are often
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denoted by γxy ≡ 2εxy, γxz ≡ 2εxz and γyz ≡ 2εyz and absorb the factor of 2
that occurs in Eq. (7.4). Voigt notation then becomes

σ⃗ = (σxx, σyy, σzz, τyz, τxz, τxy) (7.5)

and
ε⃗ = (εxx, εyy, εzz, γyz, γxz, γxy). (7.6)

Note: It is important to keep in mind that the γ’s contain a factor 2 but
the τ ’s do not. The factor of 2 ensures that σ⃗ = C · ε⃗ and σ = C : ε are
the same constitutive law.

7.2 Isotropic solids

For isotropic elasticity, the total 21 independent elastic constants reduce to
two. The constitutive equation for isotropic elasticity is

σij = λδijεkk + 2µεij (7.7)

or its inverse

εij =
1

2G
σij −

ν

E
δijδkk =

1

E
[(1 + ν)σij − νδijσkk], (7.8)

where δij is the Kronecker-Delta. These expressions have been conveniently
written in their most simple form. The constants that show up in Eqs. (7.7)
and (7.8) are the shear modulus µ, Lamé’s first constant λ, Young’s modulus
E and Poisson number ν. Both λ and ν are often called Lamé’s constants.
Note that σkk = 3σh (Einstein summation!) where σh is the hydrostatic stress.

The four moduli are not independent (only two are), and the following
expressions relate the pairs λ, µ and E, ν to each other:

λ =
Eν

(1 + ν)(1− 2ν)
(7.9)

µ =
E

2(1 + ν)
(7.10)

λ+ µ =
E

2(1 + ν)(1− 2ν)
(7.11)

E =
µ(3λ+ 2µ)

λ+ µ
(7.12)

ν =
λ

2(λ+ µ)
(7.13)
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Note that another common symbol for the shear modulus µ is the Latin letter
G.

The volumetric strain εh = 1
3
tr ε = 1

E
[(1 + ν)σh − 3 νσh] =

1
E
(1− 2ν)σh

vanishes at ν = 1/2. In this case, σij = 2σhεij because the εh = εkk must
vanish.

We can also write down a free energy functional (often also called a
hyperelastic energy density), which is quadratic in the strain ε,

W =
1

2
λε2ii + µε2ij (7.14)

Using σij = ∂W/∂εij recovers the above constitutive expression Eq. (7.7).
From the free energy functional we see that any isotropic material must have
λ > 0 and µ > 0, otherwise the energy could be made arbitrarily small by
increasing the deformation of the solid. This limits the Poisson number to
the range −1 < ν < 1/2. Note that ν < 0 is typically only achieved for
architectured materials such as foams or metamaterials.

7.3 Example: Auxetic materials
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Chapter 8

Plane problems

Plane problems are problems where the system has a symmetry in a certain
direction. We will here use the y-direction as the direction in which the
plane conditions hold. This symmetry implies that the relevant quantities do
not vary in y-direction. Note that throughout this text, we will switch this
direction.

8.1 Plane strain

For a plane strain situation, the system cannot elongate or shrink in that
direction and hence εyy = 0. From Hooke’s law for isotropic elasticity,

εij =
1

E
[(1 + ν)σij − νδijσkk], (8.1)

we see that

εyy =
1 + ν

E
σyy −

ν

E
(σxx + σyy + σzz) = 0 (8.2)

and hence
σyy = ν(σxx + σzz). (8.3)

With the two relations for εyy and σyy we can express Hooke’s law as

εxx =
1− ν2

E
σxx −

ν(1 + ν)

E
σzz (8.4)

εzz = −ν(1 + ν)

E
σxx +

1− ν2

E
σzz (8.5)

and its inverse

σxx = (λ+ 2µ)εxx + λεzz (8.6)

σzz = λεxx + (λ+ 2µ)εzz (8.7)
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Note that the condition for elastic equilibrium becomes (in Cartesian coordi-
nates)

∂σxx
∂x

+
∂σxz
∂z

= 0 (8.8)

∂σzz
∂z

+
∂σxz
∂x

= 0. (8.9)

8.2 Plane stress conditions

For plane stress we consider a situation with σyy = 0, i.e. there is no stress in
the y-direction. This is a good approximation for example for a thin plate.
In this limit, Hooke’s law becomes

εxx =
1

E
(σxx − νσzz) (8.10)

εzz =
E
(−νσxx + σzz) (8.11)

and its inverse

σxx =
E

1− ν2
(εxx + νεzz) (8.12)

σzz =
E

1− ν2
(νεxx + εzz). (8.13)

Note that plane strain and plane stress are described by the same set of
differential equations but with different elastic moduli. We can convert the
plane stress Eqs. (8.10)-(8.13) to the corresponding plane strain equation by
substituting the elastic constants,

E → E

1− ν2
and ν → ν

1− ν
. (8.14)

Hence any plane stress solution can be converted into a plane strain solution
using this substitution. In the following, we will continue to work with the
plane stress expression (because they are simpler), but all results carry over
to plane strain with this substitution.

8.3 Compatibility condition

Another condition to be fulfilled is the compatibility condition. For plane
problems, the compatibility conditions is the single equation:

∂2εxx
∂z2

+
∂2εzz
∂x2

= 2
∂2εxz
∂x∂z

(8.15)
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That it must hold is easily seen by expressing the strain in terms of the
displacements u⃗. It is therefore a consequence of the fact that the strain
field is the gradient of the displacement field. It is similar to the well-known
condition that the curl of a gradient has to disappear.

The compatibility condition has a simple geometric explanation. Imaging
a jigsaw puzzle that you deform in its assembled state. Even in the deformed
state, all pieces still have to fit together. They deformation of neighboring
pieces can therefore not be independent of each other.

38



Chapter 9

Beams

9.1 Stresses

Assume a rectangular beam in plane stress or plane strain subject to bending.
(The “plane” direction is the y-direction.) The surface normal of the beam
is oriented in z-direction and z = 0 is in the middle of the beam. Bending
will give rise to internal stresses inside of the beam. We will require that
these stresses comply with the external shear force Q(x) and bending moment
M(x) in the weak or integral sense,

Q(x) =

∫
A

dy dz τxz(x, z) (9.1)

M(x) =

∫
A

dy dz zσxx(x, z). (9.2)

Because of the plane state, integration in y-direction will only yield a constant
factor, the width t of the beam.

We can derive a condition equivalent to static equilibrium, σij,j = 0, for
the weak quantities defined in Eqs. (9.1) and (9.2). Taking the derivative of
Q(x) yields

Q,x =

∫
A

dy dz τxz,x = −
∫
A

dy dz σzz,z = −t
[
σzz(x, h/2)− σzz(x,−h/2)

]
.

(9.3)
We call the quantity q(x) ≡ t

[
σzz(x, h/2)− σzz(x,−h/2)

]
the line load of the

beam. Next, we take the derivative of M(x),

M,x =

∫
A

dy dz zσxx,x = −
∫
A

dy dz zτxz,z = −t [zτxz]h/2−h/2 +

∫
A

dy dz τxz.

(9.4)
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The first term on the right hand side vanishes because the surfaces are traction
free, τxz = 0 at z = h/2 and z = −h/2. This yields

Q,x = −q(x) (9.5)

M,x = Q(x) (9.6)

for the weak form of the equilibrium conditions.

Note: We have not yet talked about free surfaces, but of course every
physical object will be bounded by surfaces. The surface can be loaded,
i.e. there can a force acting on it. This force, normalized by area, is called
a tractions. (We have already encountered a type of traction in form of
the line load in the first chapters.) The traction is a vector field (defined
over the surface of our object) with components tx, ty and tz. Note that
in the literature these are often denoted by P for the normal component,
and Qx, Qy for the components perpendicular to the surface. (Attention:
Do not confuse this with the Q that we call the shear force here!)

These traction enter our equations as boundary condition. They fix
three components of the stress tensor at the surface. For a surface with a
normal in z-direction,

σzz = −tz, σxz = tx and σyz = ty. (9.7)

For a traction-free surface,

σzz = σxz = σyz = 0 (9.8)

at the surface. Since the stress-tensor is a tensor field that varies through-
out the body, these components will of course deviate from the surface
tractions when we regard points in the interior of our (deformed) body.

We now assume that the stress is a linear function of the position z
perpendicular to the beam axis,

σxx(x, z) = C(x)z. (9.9)

In what follow we show that this is a good assumption, i.e. we can fulfill force
and moment equilibrium and the resulting strains fulfill the compatibility
conditions.
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Note: The theory derived in this chapter is commonly referred to as
the Euler-Bernoulli beam theory. The starting point of this theory is
typically not Eq. (9.9), but the assumption that each cross section will
remain plane and undergo small rotations during deformation. These are
sometimes called the Bernoulli assumptions. They imply that the strain
εxx ∝ z rather than the stress. It is often argued that σxx = Eεxx but this
of course ignores the other components of the strain tensor. As will be
seen below, the Bernoulli assumptions are actually wrong but assuming
a linear stress profile leads to the correct small strain expression for the
deformation of a beam.

It is straightforward to compute the bending moment,

M(x) =

∫
A

dy dz σxx(x, z)z = C(x)

∫
A

dy dz z2 = C(x)Iy, (9.10)

where A is the cross-section of the beam and

Iy =

∫
A

dy dz z2 (9.11)

is the axial moment of inertia. For a rectangular beam of height h and width
t, Iy = h3t/12. The moment of inertia is a geometric factor and depends on
the shape of the cross-section of the beam.

We can rewrite Eq. (9.9) as

σxx(x, z) =
M(x)

Iy
z. (9.12)

Note that an additional longitudinal force L will simple be an additive
contribution to Eq. (9.12), σxx(x, z) =M(x)/Iyz + L/A.

We can now use the condition for static equilibrium to compute the full
stress tensor σ. From σxx,x + τxz,z = 0 we obtain

τxz,z = − z

Iy
M,x = − z

Iy
Q(x). (9.13)

We can integrate this across the height h of the beam, keeping in mind that
τxz = 0 at a traction-free surface, to yield

τxz(x, z) =
Q(x)

2Iy

(
h2

4
− z2

)
. (9.14)
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Next, we use σzz,z + τxz,x = 0 to obtain

σzz,z = − 1

2Iy
Q,x

(
h2

4
− z2

)
=
q(x)

2Iy

(
h2

4
− z2

)
. (9.15)

We need to integrate this equation again, but now σzz ̸= 0 at the surface
since the beam is subject to a line load q(x). Rather, we need the condition
that the loads on top and bottom surface of the beam balance, σzz(x, h/2) =
−σzz(x,−h/2). This gives

σzz(x, z) =
q(x)

2Iy

(
h2

4
− z2

3

)
z (9.16)

with

σzz(x, h/2) =
q(x)h3

24Iy
=
q(x)

2t
(9.17)

where t is the width of the beam.
Note that in this derivation, we have required that the stress gives rise to

a certain bending moment through Eq. (9.10). Since we do not prescribe the
specific stress state σxx(x, z) but only its integral, this is a weak condition.
Similarly, integration of Eq. (9.14) in accordance with Eq. (9.1) gives∫ t/2

−t/2

dy

∫ h/2

−h/2

dz τxz(x, z) = Q(x), (9.18)

i.e. the force acting on the cross-section at position x along the beam. Again,
this condition is fulfilled in the integral, i.e. in the weak sense.

9.2 Displacements

Now that we know the stress inside the beam, we can compute the displacement
and thereby the deformation of the beam from Hooke’s law. Starting from
Hooke’s law (in plain stress, i.e. for σyy = 0),

εxx ≡ ux,x = σxx/E − νσzz/E (9.19)

2εxz ≡ ux,z + uz,x = 2(1 + ν)τxz/E, (9.20)

and taking the derivative of Eq. (9.20) with respect to x, we obtain

ux,xz + uz,xx = 2(1 + ν)τxz,x/E (9.21)
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and

ux,xz + uz,xx = ∂z(ux,x) + uz,xx = uz,xx + (σxx,z − νσzz,z)/E. (9.22)

Combining these two equations yields

uz,xx =
[
2(1 + ν)τxz,x − σxx,z + νσzz,z

]
/E, (9.23)

where we now insert Eqs. (9.12), (9.14) and (9.16). This gives

uz,xx =
1

EIy

−(1 + ν

2

)(
h2

4
− z2

)
q(x)−M(x)

 , (9.24)

which at the surface of the beam w(x) = uz(x, h/2) becomes

EIyw,xx = −M(x). (9.25)

This equation is called the Euler-Bernoulli beam equation. By using Mxx =
−q(x) we can write this as

(EIyw,xx),xx = q(x), (9.26)

in terms of the line load q(x), or

EIyw,xxxx = q(x), (9.27)

if EIy does not depend on position x.

9.3 Buckling
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Chapter 10

Plates

10.1 Stress

Kirchhoff plate theory is the straightforward generalization of Euler-Bernoulli
beam theory to plates. We abandon the plane situation in which all derivatives
in y-direction vanish. The weak boundary conditions then become

Qx(x, y) =

∫
h

dz τxz(x, y, z) (10.1)

Qy(x, y) =

∫
h

dz τyz(x, y, z) (10.2)

Mxx(x, y) =

∫
h

dz zσxx(x, y, z) (10.3)

Myy(x, y) =

∫
h

dz zσyy(x, y, z) (10.4)

Mxy(x, y) =

∫
h

dz zτxy(x, y, z), (10.5)

where the integral is over the height h of the plate. Qx and Qy are called
shear forces, Mxx and Myy are bending moments and Mxy is the torsional
moment.

Note that employing static equilibrium σij,j = 0 we obtain

Qx,x +Qy,y =

∫ h/2

−h/2

dz
(
τzx,x + τzy,y

)
= −

∫ h/2

−h/2

dz τzz,z (10.6)

but ∫ h/2

−h/2

dz τzz,z = τzz(x, y, h/2)− τzz(x, y,−h/2) ≡ p(x, y) (10.7)
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where p(x, y) is the pressure on the plate (cf. also the corresponding equation
Eq. (9.17) for the beam). Similarly

Mxx,x +Mxy,y =

∫ h/2

−h/2

dz z
(
τxx,x + τxy,y

)
= −

∫ h/2

−h/2

dz zτxz,z (10.8)

and ∫ h/2

−h/2

dz zτxz,z = [zτxz]
h/2
−h/2 −

∫ h/2

−h/2

dz τxz = −Qx. (10.9)

where the last equality holds because τxz(x, y, h/2) = −τxz(x, y,−h/2). The
condition for static equilibrium σij,j = 0 therefore becomes

Qx,x +Qy,y = −p(x, y) (10.10)

Mxx,x +Mxy,y = Qx(x, y) (10.11)

Mxy,x +Myy,y = Qy(x, y) (10.12)

in the weak form. Note that this can be written in the compact form Qi,i = −p
and Mij,j = Qi.

As in the Euler-Bernoulli case, we assume that the components σxx, σyy
and τxy vary linearly with z. We can write

σxx(x, y, z) =
Mxx(x, y)

I
z (10.13)

σyy(x, y, z) =
Myy(x, y)

I
z (10.14)

τxy(x, y, z) =
Mxy(x, y)

I
z (10.15)

with I =
∫
dz z2 = h3/12. The remaining components of the stress tensor are

obtained from static equilibrium. Static equilibrium yields

τxz,z = −z
I
Qx and τyz,z = −z

I
Qy (10.16)

which can be integrated under the condition τxz(x, y, h/2) = τxz(x, y,−h/2) =
0 to

τxz(x, y, z) =
Qx

2I

(
h2

4
− z2

)
and τyz(x, y, z) =

Qy

2I

(
h2

4
− z2

)
. (10.17)

This is analogous to Eq. (9.14) for the beam.
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We are finally left with finding an expression for σzz. Again we use static
equilibrium to obtain

σzz,z = −τxz,x − τyz,y =
p(x, y)

2I

(
h2

4
− z2

)
. (10.18)

Integration under the condition that the loads on top and bottom surface of
the plate balance, σzz(x, h/2) = −σzz(x,−h/2), gives

σzz(x, y, z) =
p(x, y)

2I

(
h2

4
− z2

3

)
z. (10.19)

At the top and bottom of the plate we find σzz(x, h/2) = −σzz(x,−h/2) =
p(x, y)/2.

10.2 Displacements

Now that we know the stress inside the plate, we can again compute the
displacements from Hooke’s law. In the full three-dimensional case, Hooke’s
law,

εxx ≡ ux,x = (σxx − νσyy − νσzz)/E (10.20)

εyy ≡ uy,y = (σyy − νσxx − νσzz)/E (10.21)

2εxz ≡ ux,z + uz,x = 2(1 + ν)τxz/E (10.22)

2εyz ≡ uy,z + uz,y = 2(1 + ν)τyz/E (10.23)

2εxy ≡ ux,y + uy,x = 2(1 + ν)τxy/E, (10.24)

and taking the derivative of Eq. (10.22) with respect to x and of Eq. (10.23)
with respect to y, we obtain

ux,xz + uz,xx = 2(1 + ν)τxz,x/E (10.25)

uy,yz + uz,yy = 2(1 + ν)τyz,y/E (10.26)

and

ux,xz + uz,xx = ∂z(ux,x) + uz,xx = uz,xx + (σxx,z − νσyy,z − νσzz,z)/E (10.27)

uy,yz + uz,yy = ∂z(uy,y) + uz,yy = uz,yy + (σyy,z − νσxx,z − νσzz,z)/E.
(10.28)
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Combining Eqs. (10.25), (10.27) and Eqs. (10.26), (10.28) and noting that
σzz,z = −τxz,x − τxz,y yields

uz,xx =
[
(2 + ν)τxz,x − ντyz,y − σxx,z + νσyy,z

]
/E (10.29)

uz,yy =
[
(2 + ν)τyz,y − ντxz,x − σyy,z + νσxx,z

]
/E. (10.30)

We now create linear combination of these expressions such that σxx,z =Mxx/I
or σyy,z =Myy/I drop out,

uz,xx + νuz,yy =
[
(2 + ν − ν2)τxz,x − ν(1 + ν)τyz,y − (1− ν2)Mxx/I

]
/E
(10.31)

uz,yy + νuz,xx =
[
(2 + ν − ν2)τyz,y − ν(1 + ν)τxz,x − (1− ν2)Myy/I

]
/E.
(10.32)

We now only consider the displacement at the surface, w(x, y) ≡ uz(x, y, h/2).
Since the surfaces are traction free, all terms involving τxz and τyz vanish.
Hence

Mxx = −K(w,xx + νw,yy) (10.33)

Myy = −K(w,yy + νw,xx) (10.34)

with the flexural rigidity K = EI/(1− ν2) = Eh3/[12(1− ν2)].
Finally, we are looking for an expression for Mxy = Iτxy,z. We have from

Eqs. (10.22)-(10.24)

2(1 + ν)

EI
Mxy = ux,yz + uy,xz =

2(1 + ν)

E
(τxz,y + τyz,x)− 2uz,xy, (10.35)

which yields
Mxy = −K(1− ν)w,xy, (10.36)

the desired expression.
We now plug Eqs. (10.33), (10.34) and (10.36) into the equilibrium condi-

tions Eqs. (10.11) and (10.12). This yields

−K(w,xxx + w,xyy) = Qx(x, y) (10.37)

−K(w,yyy + w,xxy) = Qy(x, y) (10.38)

−K(w,xxxx + 2w,xxyy + w,yyyy) = −p(x, y). (10.39)

The last expression is Kirchhoff’s equation,

w,xxxx + 2w,xxyy + w,yyyy = ∇2∇2w = ∇4w =
p

K
, (10.40)

that governs the deformation of plates.
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Chapter 11

Plastic failure
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Chapter 12

Brittle failure

12.1 Stress near a crack tip

We now look at brittle fracture. The theory for brittle fracture is developed in
the framework of a plane problem, i.e. we assume that our crack is infinitely
extended into one direction. We need to introduce a couple of mathematical
tricks to be able to actually compute the stress field, namely the introduction
of potential functions.

Note that while our previous applications of the theory of linear elasticity
(for beams and plates) lead to solutions that were polynomials in the positions,
we will here encounter a solution that is singular, i.e. it diverges as we approach
the crack tip.

12.1.1 Airy stress function

First, we invoke Hooke’s law (in plane strain/stress),

εij =
1

E
[(1 + ν)σij − νδijσkk]. (12.1)

Using the additionalplane condition,

σyy = ν(σxx + σzz), (12.2)

Hooke’s law itself becomes

εxx =
1 + ν

E
[(1− ν)σxx − νσyy] (12.3)

εyy =
1 + ν

E
[(1− ν)σyy − νσxx] (12.4)

εxy =
1

2G
σxy =

1 + ν

E
σxy (12.5)
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under plane strain conditions. We have just eliminated reference to σzz and
εzz from the equations. Inserting Hooke’s law into the compatibility condition,

∂2εxx
∂z2

+
∂2εzz
∂x2

= 2
∂2εxz
∂x∂z

, (12.6)

yields

(1− ν)

[
∂2σxx
∂y2

+
∂2σyy
∂x2

]
− ν

[
∂2σxx
∂x2

+
∂2σyy
∂y2

]
= 2

∂2σxy
∂x∂y

, (12.7)

the compatibility condition for the stresses.
We now use a mathematical trick to solve the equations of elastic equilib-

rium. We define the Airy stress function ϕ(x, y), that gives the stresses (in
Cartesian coordinates) as

σxx =
∂2ϕ

∂y2
≡ [∇(∇ϕ)]yy, (12.8)

σyy =
∂2ϕ

∂x2
≡ [∇(∇ϕ)]xx, (12.9)

σxy = − ∂2ϕ

∂x∂y
≡ [∇(∇ϕ)]xy (12.10)

(Note that the first ∇ is the gradient of the vector field ∇ϕ, not the divergence!
Hence ∇(∇ϕ) is a second order tensor with components [∇(∇ϕ)]ij = ϕ,ij!)
Equation

∂σxx
∂x

+
∂σxz
∂z

= 0 (12.11)

becomes
∂3ϕ

∂x∂y2
− ∂3ϕ

∂x∂y2
= 0 (12.12)

and is automatically fulfilled! The same holds for the second equation of the
elastostatic equilibrium condition. We can now insert Eqs. (12.8) to (12.10)
into the compatibility condition Eq. (12.7) to give

(1− ν)

[
∂2

∂y2
∂2ϕ

∂y2
+

∂2

∂x2
∂2ϕ

∂x2

]
− ν

[
∂2

∂x2
∂2ϕ

∂y2
+

∂2

∂y2
∂2ϕ

∂x2

]
+ 2

∂2

∂x∂y

∂2ϕ

∂x∂y
= 0,

(12.13)
which can be rearranged to

∂4ϕ

∂x4
+ 2

∂4ϕ

∂x2∂y2
+
∂4ϕ

∂y4
=

(
∂2

∂x2
+

∂2

∂y2

)( ∂2

∂x2
+

∂2

∂y2

)
ϕ

 = ∇4ϕ = 0

(12.14)

50



The conditions of elastostatic equilibrium and the compatibility condition are
all simultaneously fulfilled if Eq. (12.14) is fulfilled! Equation (12.14) is the
compatibility condition, but expressed for the Airy stress function.

The operator ∇4 is called the biharmonic operator and any function
ϕ satifying ∇4ϕ = 0 is called a biharmonic function. (Functions ϕ that
fulfill the Laplace equation ∇2ϕ = 0 are called harmonic functions.) The
derivation above tells us, that for isotropic elasticity a biharmonic Airy stress
ϕ(x, y) automatically leads to a compatible strain field. This means for any
biharmonic function ϕ(x, y), the stress field derived from Eqs. (12.8)-(12.10)
will describe a system in static equilibrium. The only thing left to do is to
find the function ϕ(x, y) that fulfills a specific boundary condition.

12.1.2 Westergaard stress function

? introduced a function Z(z) that is now known as the Westergaard stress
function. The Westergaard stress function builds on top of the Airy function
and eliminates the need to even satisfy the biharmonic equation∇4ϕ = 0. This
means that for any choice of the Westergaard stress function, the conditions
for force and moment equilibrium and the compatibility condition are fulfilled
automatically. The Westergaard stress function can then be chosen freely as
to fulfill the boundary conditions of the problem.

Note that z is a complex variable that contains the x and y-position as
its real and imaginary part, z = x+ iy, and not the z-coordinate. Likewise,
the function Z(z) is complex valued. Following common notation, we denote
its integrals by

¯̄Z,z = Z̄ and Z̄,z = Z. (12.15)

Westergaard defined the Airy stress function as

ϕ(x, y) = ℜ
{
¯̄Z(x+ iy)

}
+ yℑ

{
Z̄(x+ iy)

}
(12.16)

where ℜ and ℑ denote the real and imaginary part of a complex num-
ber, respectively. This Airy stress function fulfills the biharmonic equation,
Eq. (12.14), for any arbitrary function Z(z), as we will show below.

We will now derive the expressions for the stresses. We first note that
since Z(z) is a function of a complex variable, it satisfies the Cauchy-Riemann
conditions,

ℜZ,z = (ℜZ),x = (ℑZ),y (12.17)

ℑZ,z = (ℑZ),x = − (ℜZ),y , (12.18)
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which implies that

∇2 (ℜZ) = (ℜZ),xx + (ℜZ),yy = 0 (12.19)

∇2 (ℑZ) = (ℑZ),xx + (ℑZ),yy = 0, (12.20)

(12.21)

i.e. the real and imaginary parts of the complex function Z(z) fulfill the
Laplace equation.

Note: Cauchy-Riemann equations – The Cauchy-Riemann equations are
a cornerstone of complex analysis. They hold for any differential function
of a complex variable. Such functions are also called holomorphic. Given
f(z) = u(z) + iv(z) (hence u = ℜf and v = ℑf) with z = x+ iy, we can
formally write the derivative as

f ′(z0) = lim
w∈C,w→0

f(z0 + w)− f(z0)

w
(12.22)

as the limit of the difference quotient. For real numbers, we can approach
z0 from the left or the right and both limits must equal if the function is
differentiable. In the complex plane, we can approach from any direction
in two dimensions. For example, we can compute the derivative along the
real (x-)axis, w = x:

f ′(z0) = lim
x∈R,x→0

f(z0 + x)− f(z0)

x
=
∂u

∂x
+ i

∂v

∂x
(12.23)

We can equally well compute the derivative along the imaginary (y-)axis,
w = iy, which gives

f ′(z0) = lim
y∈R,y→0

f(z0 + iy)− f(z0)

iy
= −i∂u

∂y
+
∂v

∂y
. (12.24)

Since both expressions have to be equal, we find

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
, (12.25)

the Cauchy-Riemann equations.
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Now we differentiate ϕ with respect to x and y. This yields

ϕ,x =
(
ℜ ¯̄Z
)
,x
+ y

(
ℑZ̄
)
,x
= ℜ ¯̄Z,z + yℑZ̄,z = ℜZ̄ + yℑZ (12.26)

ϕ,y =
(
ℜ ¯̄Z
)
,y
+
(
yℑZ̄

)
,y
= −ℑ ¯̄Z,z + ℑZ̄ + yℜZ̄,z = yℜZ (12.27)

for the first derivatives and

ϕ,xx =
(
ℜZ̄
)
,x
+ y (ℑZ),x = ℜZ̄,z + yℑZ,z = ℜZ + yℑZ,z (12.28)

ϕ,yy = (yℜZ),y = ℜZ + y (ℜZ),y = ℜZ − yℑZ,z (12.29)

ϕ,xy =
(
ℜZ̄
)
,y
+ (yℑZ),y = −ℑZ̄,z + ℑZ + yℜZ,z = yℜZ,z (12.30)

for the second derivatives. In summary, we obtain

σxx = ϕ,yy = ℜZ − yℑZ,z (12.31)

σyy = ϕ,xx = ℜZ + yℑZ,z (12.32)

σxy = −ϕ,xy = −yℜZ,z (12.33)

for the components of the stress tensor. Note that the Ansatz Eq. (12.16)
fulfills the biharmonic equation. We know from summing Eqs. (12.31) and
(12.32) that

ψ ≡

(
∂2

∂x2
+

∂2

∂y2

)
ϕ = 2ℜZ, (12.34)

hence by virtue of Eq. (12.19), ∇4ϕ = ∇2ψ = 0 is fulfilled for any function
Z(x + iy). The utility of the Westergaard function over the Airy stress
function is hence that we have eliminated the need to explicitly fulfill the
biharmonic equation.

12.1.3 Stress field

We here discuss only mode I fracture, i.e. crack opening displacement.
Consider a plane (strain or stress) situation in which we can derive the stress
field from the Westergaard stress function Z(x+ iy), Sec. 12.1.2. ? made the
Ansatz

Z(z) =
σ∞√

1− (a/z)2
(12.35)

for the stress function of a central crack in a large sheet. Here 2a is the length
of the crack and σ∞ the stress at infinity. The derivative of the stress function
is

Z,z =
σ∞√
z2 − a2

[
1− 1

1− (a/z)2

]
(12.36)
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and its integral is

Z̄ = σ∞
√
z2 − a2. (12.37)

Let us first look in the plane of the crack where y = 0, z = x and hence

Z(x) =
σ∞√

1− (a/x)2
. (12.38)

For |x| < a (inside the crack) the function is imaginary but for |x| > a
(outside the crack) the function is real. The stresses in the plane of the crack
are given by σxx = ℜZ, σyy = ℜZ and τxy = 0. Hence they vanish inside
the crack. This is the condition for the crack faces which are free surfaces
and therefore tractionless. Note that σxx does not need to vanish from this
condition but does here.

Outside the crack (but in the plane of the crack, y = 0), the stress is given
by

σxx = σyy =
σ∞√

1− (a/x)2
. (12.39)

It diverges as x → a from above and approaches the hydrostatic state
σxx = σyy = σ∞ as x→ ∞.

We will now focus on the crack line and switch to the variable z∗ = z − a.
The stress function becomes

Z(z∗) =
σ∞(z∗ + a)√
(z∗ + a)2 − a2

=
σ∞(z∗ + a)√
(z∗)2 + 2az∗

≈ σ∞

√
a

2z∗
(12.40)

where the ≈ sign is valid for small z∗. We write this expression as

Z(z∗) =
KI√
2πz∗

with KI = σ∞
√
πa. (12.41)

Note that we have absorbed both the stress at infinity σ∞ and the crack
length a into a single constant, the stress intensity factor (for mode I fracture),
KI . The stress field near the crack tip depends only on KI , not on σ∞ and a
individually and hence the loading condition and geometry, independently.

To derive the component of the stress tensor, we switch to cylindrical
coordinates and write z∗ = reiθ, yielding

Z(r, θ) =
KI√
2πr

e−iθ/2. (12.42)

In order to obtain the full stress field, we also need the expression for the
derivative of the Westergaard stress function near the crack tip. From
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Eq. (12.36), we find

Z,z ≈
σ∞√
2az∗

[
1− 2az∗ + a2

2az∗

]
= − σ∞a

2

(2az∗)3/2
= − KIπ

(2πz∗)3/2
= − KI√

8πr
e−3iθ/2.

(12.43)
We now obtain the individual components of the stress tensor from Eq. (12.31)-
(12.33):

σxx = ℜZ − yℑZ,z =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(12.44)

σyy = ℜZ + yℑZ,z =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
(12.45)

σxy = −yℜZ,z =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
(12.46)

Hence the stress field near the crack tip is entirely described by the stress
intensity factor KI . KI is measured in (weird) units of Pa

√
m. The I indicates

that this is the stress intensity factor for mode I fracture. KII and KIII are
related quatities for the two other fracture modes.

Note that the stress intensity factor is the amplitude of the square-root
singularity of the stress field at the crack tip. It is often defined from the
stress field itself as the limit

KI = lim
r→0

√
2πrσyy(r, 0) (12.47)

KII = lim
r→0

√
2πrσxy(r, 0) (12.48)

KIII = lim
r→0

√
2πrσyz(r, 0) (12.49)

where the singularity has been removed by multiplying with
√
2πr. Note that

the limit is taken at the angle θ = 0, i.e. along y = 0 within the plane of the
crack. From Eqs. (12.47) to (12.49) is also clear that only KI is nonzero for
the crack geometry that is discussed in this chapter.

55



12.2 Fracture toughness

12.2.1 Displacement field at the crack tip

In order to compute the displacement field near the crack, we first need the
strain field. As usual, we obtain this from Hooke’s law (in plain stress):

εxx ≡ ux,x =
1

E

(
σxx − νσyy

)
=

1

E

[
(1− ν)ℜZ − (1 + ν)yℑZ,z

]
(12.50)

εyy ≡ uy,y =
1

E

(
σyy − νσxx

)
=

1

E

[
(1− ν)ℜZ + (1 + ν)yℑZ,z

]
(12.51)

2εxy ≡ ux,y + uy,x = 2
1 + ν

E
σxy = −2

1 + ν

E
yℜZ,z (12.52)

Now we use Z = Z̄,z to express ℜZ = ℜZ̄,z = (ℜZ̄),x and ℑZ,z = (ℑZ),x in
Eq. (12.50) to identify

ux =
1

E

[
(1− ν)ℜZ̄ − (1 + ν)yℑZ

]
=

1

2µ

[
1− ν

1 + ν
ℜZ̄ − yℑZ

]
. (12.53)

The expression for uy is more complicated because of the explicit y that shows
up in the expressions for the strains. It is given by

uy =
1

2µ

[
2

1 + ν
ℑZ̄ − yℜZ

]
. (12.54)

It is straightforward to verify that from these two expressions we also recover
the expression for εxy.

It is common to replace ν with κ = (3− ν)/(1 + ν). The displacements
can then be written as

ux =
1

4µ

[
(κ− 1)ℜZ̄ − 2yℑZ

]
(12.55)

uy =
1

4µ

[
(κ+ 1)ℑZ̄ − 2yℜZ

]
. (12.56)

Since the integral of the Westergaard function near the crack tip is

Z̄(z∗) ≈ σ∞
√
2az∗ = KI

√
2z∗

π
= 2KI

√
r

2π
eiθ/2, (12.57)

we can directly write the displacement field in cylindrical coordinates as

ux =
KI

2µ

√
r

2π

[
2
1− ν

1 + ν
cos

θ

2
+ sin2 θ

2

]
(12.58)

uy =
KI

2µ

√
r

2π

[
2
1− ν

1 + ν
cos

θ

2
+ sin2 θ

2

]
. (12.59)
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Note that in the plane of the crack (y = 0, z∗ = x), the displacement field is
given by

ux =

{
KI

2µ
(κ− 1)

√
x
2π

if x > 0

0 if x ≤ 0
(12.60)

u+y =

{
0 if x ≥ 0
KI

2µ
(κ+ 1)

√
− x

2π
if x < 0

. (12.61)

The y-displacement here is denoted with a little +, u+y , to indicate that this
is the displacement of the top crack face at a position y = 0+, i.e. slightly
above y = 0. The displacement u−y of the bottom crack face is the negative of
this values, u−y = −u+y , for symmetry reasons. Mathematically, this property
emerges because the square-root has a branch cut along the negative real
axis.

12.2.2 Strain energy release rate

In order to formulate a fracture criterion we will require an expression for the
elastic energy released during propagation of the crack. This will lead to the
concept of the strain energy release rate.

We have not yet talked about the concept of energy in these notes. Since
elasticity is fully reversible (an elastic object returns to its origin shape
when unloaded), the work carried out when deforming an elastic body is
conservative. This means we can define an elastic energy that is recoverable
by unloading the body. In order to define the energy release rate, we will
here focus on the work W done by a moving crack.

We first note that the crack faces do not contribute to the work because
the normal stress is zero by definition, since we are dealing with a free surface.
We therefore have to focus on the crack tip. The tip opens by the distance
given by Eq. (12.61) to both sides. This displacement works against the stress
σyy right at the crack tip. We now assume that the crack moves by a distance
∆a which we will later take to zero. We assume that the stress before the
crack has moved is taken to zero quasistatically during the crack opening
process. The crack faces have opened a distance

u+y − u−y = 2
KI

2µ
(κ+ 1)

√
∆a− x∗

2π
(12.62)

after the crack has moved by ∆a. The stress was

σyy =
KI√
2πx∗

(12.63)
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before the movement of the crack. The work on the crack faces is then
W =

∫
dx∗σyy(u

+
y − u−y )/2. (The factor 1/2 enters because we are taking the

stress to zero as the crack faces are displacing. Imagine a simple spring with
force f = kx taken from x0 to x = 0. The work is kx20/2, equal to the elastic
energy of the string at extension x0.) This gives

W (∆a) =
K2

I

4πµ
(κ+ 1)

∆a∫
0

dx∗
√

∆a− x∗

x∗
=
K2

I

µ

κ+ 1

8
∆a =

K2
I

E
∆a (12.64)

where we have used
∫ 1

0
dx
√

(1− x)/x = π/2. The energy released per crack
length is then

G =
W

∆a
=
K2

I

E
. (12.65)

G is called the strain energy release rate and has units of energy per area.
Note that Eq. (12.65) is valid for a state of plain strain, which has entered
through Hooke’s law in Eqs. (12.50) to (12.52).

12.3 Griffith’s fracture criterion

The value ofKI uniquely defines the stress field near the crack tip and therefore
determines when the crack advances. We define a critical KIc beyond which
the crack becomes unstable and a new crack opens when KI > KIc. KIc is
called the fracture toughness. Generally, KI depends on crack geometry and
loading condition. For the example worked above, a straight crack of length
a in an infinite isotropic medium we get Eq. (12.41). We see that the stress
intensity factor KI growth with crack length a; hence there is a critical length
ac beyond which the crack becomes unstable.

As the crack advances it creates new surface area. An advance of the crack
from length a to length a+∆a requires the additional energy ∆Esurf = 2γ∆a.
Here, γ is the surface energy of the pristine crack surface and the factor of 2
enters because a crack has two faces. Since we are looking at a plane situation,
∆Esurf is an energy per unit length.

Griffith’s fracture criterion now states that the crack advances when the
energy released from the elastic field (described by the strain energy release
rate G) is larger than the energy needed to create a new surface,

G > Gc (12.66)

where Gc is Griffith’s critical energy release rate. For an ideal brittle crack,

Gc = 2γ, (12.67)
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because we only need to “pay” for the new surface with elastic energy. This
allows us to define a fracture toughness, KIc =

√
EGc, from Griffith’s theory.
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