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Exercise 13: fracture
22.01.2024 - 26.01.2024

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A thick substrate of width w is coated with a thin film. The material of the film has Young’s modulus E and
Poisson ratio ν. There is a crack of length a between substrate and film. Now the substrate is subjected to a
tensile strain ε0, which is therefore also imposed on the film. Calculate the energy release rate G!

Solution: We will assume that the plate is sufficiently wide so that coating is approximately in a state of plane
strain. Moreover, the coating can relax along the direction perpendicular to the plate, i.e. the normal stress in
this direction vanishes. Therefore, the coating is in a state of pure tensile stress for x ≫ h. The modulus for
pure tensile stress in plane strain is E/(1− ν2), i.e.

σ =
E

1− ν2
ε0.

The internal energy density is σε0/2. When the crack advances by a short distance da, then the film contracts
again over this distance. The change in energy is

dΠ = −1

2
σε0whda = −σ2 1− ν2

2E
Bhda.

The energy release rate is therefore

G =
1− ν2

2E
σ2h.

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
An elastic film of thickness d and Young’s modulus E is peeled at an angle θ from a rigid substrate and a constant
force F . During peeling the loose end of the film is stretched and stores elastic energy. This elastic energy is
available for the creation of a new surface. Remember that the Griffith criterion for fracture is the hypothesis,
that the new surface is created if the released elastic energy is larger than the energy required for making the
new surface. We now consider the energy balance during release of the rubber film between points A and B.

(a) Assume that w = 2γ is the work of adhesion, i.e. the magnitude of the energy per surface area that is
required to separate the film from the substrate. What is the energy Esurf required to advance the film by
∆c?
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(b) Once released, the section A-B of the film is elongated with respect to its original length∆c. What is the
elongation x = ε∆c (where ε is the strain) of that section of the film under the action of the force F ?

(c) Compute the energy required for the extension of the section A-B of the film by integrating the elastic
restoring force f(x) over the elongation of the film, i.e. Eel =

∫ ε∆c

0
dx f(x). Write the final expression in

terms of F .
(d) Finally, the loose end of the film (to the left of point A) gains potential energy because it moves parallel

to the force F . By what distance ∆x does the loose end move parallel to F when the film section A-B is
released from the interface? (There is a purely geometric contribution to this distance and a contribution
that comes from streching the section A-B.)

(e) Compute the potential energy by integrating the force F over this distance, i.e. Epot =
∫∆x

0
dxF .

(f) Write down the total energy balance for this process. For this you need to consider which of the above
processes release and which cost energy to determine their respective sign.

(g) What is the critical force F required to peel the rubber film at an angle θ from the glass substrate? Is there
an angle at which peeling is no longer possible?

Solution: Reference: K. Kendall,Thin-film peeling - the elastic term, J. Phys. D 8, 1449 (1975)
(a) The are that is release from the substrate is b∆c, the surface energy (cost) is hence Esurf = wb∆c.

(b) The stress inside the film is σ = F/bd. This leads to a strain of ε = σ/E = F/bdE. The elongation is then
given by x = ε∆c = F∆c/bdE.

(c) Given the stress in the film σ = Eε and the strain at elongation x of ε = x/∆c, the elastic restoring force
is given by f(x) = σ(x)bd = bdEx/∆c. We now integrate

Eel =

∫ ε∆c

0

dx
bdE

∆c
x =

1

2

bdE

∆c
ε2∆c2 =

∆c

2bdE
F 2 (1)

(d) The elongation due to stretching was computed in the part (b). It is given by

∆xs = ε∆c =
F∆c

bdE
. (2)

The geometric contribution is given by

∆xg = ∆c−∆c cos θ = (1− cos θ)∆c. (3)

The strip to the left of point A hence moves a distance

∆x =
F∆c

bdE
+ (1− cos θ)∆c (4)

in the direction of the force F .

(e) Since the force F is constant, the energy is simply given by Epot = F∆x.

(f) Esurf is an energy cost (negative sign), Eel is an energy cost (negative sign), but Epot is the work performed
on the system (postive sign). The total energy balance is hence

∆E = Epot − Eel − Esurf =
∆c

2bdE
F 2 + (1− cos θ)∆cF − wb∆c (5)

The strip peels if ∆E > 0. It is useful to normalize∆E by the area b∆c of the peeling from. This gives

∆E

b∆c
=

1

2dE

(
F

b

)2

+ (1− cos θ)
F

b
− w (6)

(g) Solving for F yields
F

b
= −dE(1− cos θ)±

√
d2E2(1− cos θ)2 + 2dEw (7)

where only the + sign is relevant (because the other sign leads to a negative force). Peeling is always
possible since F > 0 for any angle θ.
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Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A bar of length b and negligible mass is fixed at the ceiling and carries a much heavier body of mass m. Gravity
acts downwards and the gravitational acceleration is g. The bar has a cylindrical cross-section with a diameterD.
It is made of a material with Young’s modulus E, Poisson ratio ν and critical stress intensity factor KIc. In the
middle of the bar there is a circumferential notch of depth a = D/10. Determine the maximum mass m that the
bar can sustain without breaking! Use the approximation for the stress intensity factor KI that is shown in the
figure!

Solution: The normal force acting on the bar is F = mg. This leads to a stress σF/A = 4F/πD2 = 4mg/πD2

inside the bar. The bar breaks whenKI > KIc , i.e. when

KIc <
4mg

πD2
(πa)

1
2

1− 3(1/10)

[1− 2(1/10)2]
3/2

=
4mg

πD3/2
(πa/D)

1/2 0.7

0.983/2

=
2.8

(10 · 0.983 · π)1/2
mg

D3/2

≈ 0.515
mg

D3/2

Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A cantilever beam of length L, thickness 2b and width w is subjected to a normal force F at the end. The beam is
made of a brittle material with critical stress intensity factor KIc, and contains a crack of length 2a at the center.
What is the maximum value of F at which the beam breaks? The stress intensity factorKI for a plate with center
crack of length 2a under constant uniaxial tension is given in the figure.

L

x

z

b

b
F 2a

w

y

zcrack

b

b
2a

Solution: The normal stress in the beam is

σ =
F

2wb
,

hence the stress intensityKI is

KI =
F

2wb

√
πa

(
1 +

π2a2

16b2

)
.
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The beam breaks ifKI > KIc, therefore the maximum value of F is

F =
2wb√
πa

(
1 +

π2a2

16b2

)−1

KIc.


