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Exercise 10: Bending and buckling
18.12.2023 - 22.12.2023

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Determine if the following structures are statically determinate! Calculate the deflection and the reaction forces and
moments at the supports!

Solution: Recall that a structure is statically determinate if

3n− (r + v) = 0,

where n is the number of bodies, r the number of reaction forces or moments of the supports, and v the number of
forces or moments transmitted at links.

(a) n = 1, r = 4, v = 0 → indeterminate / overconstrained

(b) n = 1, r = 3, v = 0 → determinate

(c) n = 1, r = 3, v = 0 → determinate

In order to calculate the z-deflection w(x) of the beam we have to integrate the Euler-Bernoulli equation. However,
there are two possible starting points. Either we integrate EIw′′′′(x) four times, or we first determine the bending
moment as a function of position (M(x)) and then integrate EIw′′(x) = −M(x) two times. In both cases we need
to make use of the boundary conditions in order to determine the constants of integration. However, in the second
case, there will be fewer constants of integration.
Since problem (a) is indeterminate we cannot immediately calculateM(x) and therefore need to follow the first
approach. Note that problems (a) and (b) have the same geometry, load and boundary condition on the right hand
side. Hence, (b) can be solved quickly by recycling the solution of (a).
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Now we apply boundary conditions:

w(x = 0) = 0 =⇒ C4 = 0,

w′(x = 0) = 0 =⇒ C3 = 0,

w′′(x = l) = 0 (zero moment)
w(x = l) = 0

}
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The solution for the displacements can thus be written as
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The reaction forces and moments can be obtained by evaluating the appropriate derivatives of w(x) at the location
of the bearings. To get the correct sign, draw the reaction forces and moments with an arbitrary sense. Then imagine
a cut and require that the bearing force/moment and the reaction force/moment sum to zero.

Az = Q(x = 0) = −EIw′′′(x = 0) = −C1 =
9
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2,

Ax = 0 (equilibrium)

We could check the solution for Az , Bz and MA by checking equilibrium of the whole structure.
(b) The line load is the same in (a), therefore the leading term of w(x) is q0x5/120l, as before. The boundary
conditions are

w(x = 0) = 0 =⇒ C4 = 0, w′′(x = 0) = 0 =⇒ C2 = 0, w′′(x = l) = 0 (zero moment) =⇒ C1 = −1
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hence the solution for the displacements is
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The reactions forces are

Az = Q(x = 0) = −EIw′′′(x = 0) = −C1 =
1

6
q0l,

Bz = −Q(x = l) = EIw′′′(x = l) =
1

3
q0l.
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The same solution should be obtained by consideration of equilibrium of the whole structure.
(c) The problem is statically determinate, hence the reactions at the support can be obtained by requiring equilibrium
of the whole structure,

Ax = 0,

Az = F,

MA = Fa.

We divide the structure into two sectors, 0 ≤ x ≤ a (sector 1) and a ≤ x ≤ l (sector 2). The internal moment is

M (1)(x) = F (x− a) ,

M (2)(x) = 0.

The deflection is obtained by integrating the second derivative of w′′(x).

EIw(1)′′(x) = F (x− a) ,

EIw(1)′(x) = −1

2
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EIw(1)(x) = −1

6
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EIw(2)′′(x) = 0,

EIw(2)′(x) = C3,

EIw(2)(x) = C3x+ C4.

Consideration of the boundary conditions gives the solution for the constants of integration,

w(1)′(x = 0) = 0 =⇒ C1 = 0,

w(1)(x = 0) = 0 =⇒ C2 = 0,

w(1)′(x = a) = w(2)′(x = a) =⇒ C3 =
1

2
Fa2,

w(1)(x = a) = w(2)(x = a) =⇒ C4 = −1

6
Fa3.

The solution for the deflection is therefore
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Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference: Gere and Timoshenko, Mechanics of Materials, 4th ed., PWS Publishing Company (p. 789)
A horizontal beam AB is supported by a pinned-end column CD, as shown in the figure. The column is a solid
steel bar (Young’s modulus E = 200GPa) of square cross-section having length L = 1.8m and side dimensions
b = 50mm. For safety reasons, the normal force in column CD should not exceed half the critical buckling force
Fcrit. Determine the maximum allowable force Q!
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Solution: We first need to compute the normal force F in column CD. We cut the two members at point C . The
equilibrium conditions yield

C −Azd− 2Qd = 0 =⇒ Az = −2Q

↑ Az + F −Q = 0 =⇒ F = Q−Az = 3Q

The second Euler buckling case is the relevant case. F must not exceed half the critical load, so the requirement is

F ≤ 1

2

π2EI

L2
,

↔ Q ≤ 1

6

π2EI

L2
.

In the previous exercise, we computed the second moment of area for a rectangular cross-section with side lengths
b and h as I = bh3/12. For a square h = b, hence I = b4/12, and therefore

Q ≤ 1

72

π2Eb4

L2
.

By inserting the known material parameters and dimensions, we find Q ≤ 52.9 kN.
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Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calculate the second moment of area Iy for a regular hexagon:

Solution: Start from the definition of the second moment of inertia Iy

Iy =

∫
z2dA

The infinitesimal area dA can be computed like sketched in the figure. Recognize that a hexagon can be constructed
from six equilateral triangles of edge length a, which have a height of h =

√
3
2 a. Thus the coordinate z is from the

interval [−h,+h]. The length in y-direction is a linear function of |z| and goes from∆y = 2a at z = 0 to∆y = a

at z = ±h. We find Deltay(z) = a

(
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)) and dA = ∆y(z)dz. The integral becomes
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