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Exercise 9: Bending
11.12.2023 - 15.12.2023

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calculate the second moment of area Iy for the following profiles:
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Hints:

• For the solution of (b) it is useful to consider the polar moment Ir =
∫
r2dA =

∫
(y2 + z2)dA. From the

symmetry of the problem it follows that Iy = Iz .

• For the solution of (c) you can use the result from (a). Decompose the cross-section into rectangles and sum their

respective Iy to get Iy of the whole cross-section. You will need the parallel axis theorem (Huygens-Steiner

theorem), which says that the moment Iȳ for bending about an axis ȳ that is parallel to y but separated by a

distance l is Iȳ = Iy + l2A, where A is the area.

Solution: We need to compute the integral

Iy =

∫
z2dA

for the depicted cross-sections. We will need to specify what dA is in each case.

(a) The area element dA is a strip of width b and height dz.

dA = bdz

→ Iy =

∫ h/2

−h/2

z2bdz =
1

12
h3b

(b) We’ll start by calculating the polar moment Ir =
∫
r′2dA. Here, dA is a ring of thickness dr′. One can either

reason from the geometrical considerations how dA looks like

dA = (r′ + dr′)2π − r′2π = 2r′dr′π + dr′2π ≈ 2rdrπ

→ Ir =

∫ r

0

2πr′3dr′ =
π

2
r4

or one could remember cylindrical coordinates to find

dA = rdrdφ

→ Ir =

∫ 2π

0

∫ r

0

r′3dr′dφ =
π

2
r4
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Now Ir =
∫
r2dA =

∫
(y2 + z2)dA = Iy + Iz . The cross-section is symmetric with respect to bending about y and

z. Therefore Iy = Iz = 1/2Ir = π
4 r

4
.

(c) We partition the cross-section into three rectangles R1, R2, and R3 (see above). The contribution of R1 can

be computed directly using the result from (a). For R2 and R3 we need the parallel axis theorem. The centers of

gravity of both rectangles are ±(h+ t)/2 away from the origin. Their contribution is therefore Iy = 1
12 t

3b+ l2A,

with l = ±(h+ t)/2 and A = tb. In summary, we have

Iy (whole cross-section) = 2

(
1

12
t3b+

1

4
(h+ t)2tb

)
+

1

12
dh3 =

2

3
t3b+ ht2b+

1

2
h2bt+

1

12
dh3.

Note that if d, t ≪ b, h, then Iy ≈ 1
2h

2bt+ 1
12dh

3
, i.e. the only significant contribution from R2 and R3 is due to

the second term of the parallel axis theorem!

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A beam with cylindrical cross-section (radius r) is supported by two bearings, see below. A moment M is applied at

one end. Calculate the maximum deflection! Where does it occur?
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Solution: Reference:Gross, Hauger, Schröder, Wall, Technische Mechanik 2, 9th edition, Springer Vieweg (pages

122–123).

Recall that a structure is statically determinate if

3n− (r + v) = 0,

where n is the number of bodies, r the number of reaction forces or moments of the supports, and v the number of

forces or moments transmitted at links. Here n = 1, r = 3, v = 0 → the structure is statically determinate.

From equilibrium, we have Ax = 0 and Az = −B = −M/l. The internal moment is

M(x) = −xAz = M
x

l
.

Let E be Young’s modulus and Iy the second moment of area for bending about y. Integration of the differential

equation of the bending line yields

EIyw
′′ = −M

l
x

EIyw
′ = −M

2l
x2 + C1

EIyw = −M

6l
x3 + C1x+ C2
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The boundary conditions are w(0) = 0 and w(l) = 0. Inserting into the last equation gives C2 = 0 and C1 = Ml
6 .

Thus, we have

w(x) =
1

EIy

(
−M

6l
x3 +

Ml

6
x

)
.

The maximum value of w occurs at the position x∗
where w′(x∗) = 0, i.e.

−M

2l
(x∗)2 +

Ml

6
= 0 → x∗ =

1√
3
l.

Thus

w(x∗) =

√
3Ml2

27EIy
.

For the circular cross-section, we have from exercise 1(b) Iy = π
4 r

4
. Inserting gives

w(x∗) =
4
√
3Ml2

27πEr4
.

Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The beam shown below has the bending stiffness EI and is subjected to a line load q0. Calculate the reaction forces

and the deflection of the beam!

q0

x

z

A
B C

ℓ ℓ

EI

Hint: If a system is hyperstatic it might be helpful to start from the Euler-Bernoulli equation before trying to determine

the reaction forces.

Solution: This structure is composed of one element (r = 1) and four bearings, which create five reactions (r = 5).
Testing for determinacy, we find

3n− (r + v) = −2, (1)

i.e. the structure is hyperstatic. We cannot find all reactions by consideration of equilibrium alone. Thus, we will

first solve the Euler-Bernoulli equation and then obtain the reactions from the solution.

There is a discontinuity at the support B, hence we need to find separate solutions for the two sectors 0 ≤ x ≤ ℓ
(sector 1) and ℓ ≤ x ≤ 2ℓ (sector 2). Let w(1)(x) be the deflection along z in sector 1. There is no line load, hence

EIw(1)′′′′(x) = 0, (2)

EIw(1)′′′(x) = C
(1)
1 , (3)

EIw(1)′′(x) = C
(1)
1 x+ C

(1)
2 , (4)

EIw(1)′(x) =
1

2
C

(1)
1 x2 + C

(1)
2 x+ C

(1)
3 , (5)

EIw(1)(x) =
1

6
C

(1)
1 x3 +

1

2
C

(1)
2 x2 + C

(1)
3 x+ C

(1)
4 , (6)
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where C
(1)
1 , C

(1)
2 , C

(1)
3 , and C

(1)
4 are constants of integration.

In sector 2, the line load is q0, therefore

EIw(2)′′′′(x) = q0, (7)

EIw(2)′′′(x) = q0x+ C
(2)
1 , (8)

EIw(2)′′(x) =
1

2
q0x

2 + C
(2)
1 x+ C

(2)
2 , (9)

EIw(2)′(x) =
1

6
q0x

3 +
1

2
C

(2)
1 x2 + C

(2)
2 x+ C

(2)
3 , (10)

EIw(2)(x) =
1

24
q0x

4 +
1

6
C

(2)
1 x3 +

1

2
C

(2)
2 x2 + C

(2)
3 x+ C

(2)
4 , (11)

where C
(2)
1 , C

(2)
2 , C

(2)
3 , and C

(2)
4 are constants of integration.

The following boundary conditions apply:

w(1)(x = 0) = 0 (beam is clamped),

w(1)(x = 0)
′
= 0 (beam is clamped),

w(1)(x = l) = w(2)(x = l) = 0, (support at B),

w(1)′(x = l) = w(2)′(x = l), (no kink at B),

w(1)′′(x = l) = w(2)′′(x = l), (moment continuous at B),

w(2)(x = 2l) = 0 (support at C).

w(2)′′(x = 2l) = 0 (no moment at support C).

(12)

By using the first two boundary conditions, we find C
(1)
4 = C

(1)
3 = 0. Inserting the third boundary condition in Eq.

6, we get

C
(1)
2 = −1

3
C

(1)
1 l. (13)

w(2)(x = l) = 0 and w(2)(x = 2l) = 0 imply

C
(2)
4 = −

(
1

24
q0l

4 +
1

6
C

(2)
1 l3 +

1

2
C

(2)
2 l2 + C

(2)
3 l

)
, (14)

C
(2)
4 = −

(
2

3
q0l

4 +
4

3
C

(2)
1 + 2C

(2)
2 l2 + 2C

(2)
3 l

)
, (15)

which can be combined to give

C
(2)
3 = −

(
5

8
q0l

3 +
7

6
C

(2)
1 l2 +

3

2
C

(2)
2 l

)
, (16)

C
(2)
4 =

7

12
q0l

4 + C
(2)
1 l3 + C

(2)
2 l2. (17)

w(2)′′(x = 2l) = 0 yields

C
(2)
2 = −2q0l

2 − 2C
(2)
1 l.
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The only remaining unknowns are now C
(1)
1 and C

(2)
1 . Thus far, we have

EIw(1)(x) =
1

6
C

(1)
1

(
x3 − lx2

)
,

EIw(2)(x) = − 1

24
q0x

4 +
1

6
C

(2)
1 x3 −

(
q0l + C

(2)
1

)
lx2 +

19

8
q0l

3x+
11

6
C

(2)
1 l2x− 17

12
q0l

4 − C
(2)
1 l3.

Finally, the conditions w(1)′(x = l) = w(2)′(x = l) and w(1)′′(x = l) = w(2)′′(x = l) at B yield

C
(1)
1 =

3

28
q0l,

C
(2)
1 = −11

7
q0l.

The deflections are therefore

w(1)(x) =
1

EI

[
1

56
q0l

(
x3 − lx2

)]
,

w(2)(x) =
1

EI

[
− 1

24
q0x

4 − 11

42
q0lx

3 +
4

7
q0l

2x2 +
19

8
q0l

3x− 121

42
q0l

3x− 17

12
q0l

4 +
11

7
q0l

4

]
.

The reaction forces can be obtained from the derivatives of the deflections,

Az = −EIw(1)′′′(x = 0) = − 3

28
q0l,

MA = −EIw(1)′′(x = 0) =
1

28
q0l

2,

−Cz = −EIw(2)′′′(x = 2l) → Cz =
3

7
q0l.

Ax = 0 and Bz = 19
28q0l follow from equilibrium.

A final note: dividing the structure into different sectors and finding separate solutions, as was done here, can be a

bit tedious. A shorter and more elegant solution is possible using Macaulay brackets (Föppel brackets), see Hauger,

Lippmann, Mannl, Werner, Aufgaben zur Technischen Mechanik 1–3, 3d ed. Springer (p. 224–225).


