Exercise 9: Bending

11.12.2023-15.12.2023

Question 1

Calculate the second moment of area I_{y} for the following profiles:

(b)

Hints:

- For the solution of (b) it is useful to consider the polar moment $I_{r}=\int r^{2} d A=\int\left(y^{2}+z^{2}\right) d A$. From the symmetry of the problem it follows that $I_{y}=I_{z}$.
- For the solution of (c) you can use the result from (a). Decompose the cross-section into rectangles and sum their respective I_{y} to get I_{y} of the whole cross-section. You will need the parallel axis theorem (Huygens-Steiner theorem), which says that the moment $I_{\bar{y}}$ for bending about an axis \bar{y} that is parallel to y but separated by a distance l is $I_{\bar{y}}=I_{y}+l^{2} A$, where A is the area.

Solution: We need to compute the integral

$$
I_{y}=\int z^{2} d A
$$

for the depicted cross-sections. We will need to specify what $d A$ is in each case.
(a)

(b)

(c)

(a) The area element $d A$ is a strip of width b and height $d z$.

$$
\begin{aligned}
d A & =b d z \\
\rightarrow I_{y} & =\int_{-h / 2}^{h / 2} z^{2} b d z=\frac{1}{12} h^{3} b
\end{aligned}
$$

(b) We'll start by calculating the polar moment $I_{r}=\int r^{\prime 2} d A$. Here, $d A$ is a ring of thickness $d r^{\prime}$. One can either reason from the geometrical considerations how $d A$ looks like

$$
\begin{aligned}
d A & =\left(r^{\prime}+d r^{\prime}\right)^{2} \pi-r^{\prime 2} \pi=2 r^{\prime} d r^{\prime} \pi+d r^{\prime 2} \pi \approx 2 r d r \pi \\
\rightarrow I_{r} & =\int_{0}^{r} 2 \pi r^{\prime 3} d r^{\prime}=\frac{\pi}{2} r^{4}
\end{aligned}
$$

or one could remember cylindrical coordinates to find

$$
\begin{aligned}
d A & =r d r d \varphi \\
\rightarrow I_{r} & =\int_{0}^{2 \pi} \int_{0}^{r} r^{\prime 3} d r^{\prime} d \varphi=\frac{\pi}{2} r^{4}
\end{aligned}
$$

Now $I_{r}=\int r^{2} d A=\int\left(y^{2}+z^{2}\right) d A=I_{y}+I_{z}$. The cross-section is symmetric with respect to bending about y and z. Therefore $I_{y}=I_{z}=1 / 2 I_{r}=\frac{\pi}{4} r^{4}$.
(c) We partition the cross-section into three rectangles $R 1, R 2$, and $R 3$ (see above). The contribution of $R 1$ can be computed directly using the result from (a). For $R 2$ and $R 3$ we need the parallel axis theorem. The centers of gravity of both rectangles are $\pm(h+t) / 2$ away from the origin. Their contribution is therefore $I_{y}=\frac{1}{12} t^{3} b+l^{2} A$, with $l= \pm(h+t) / 2$ and $A=t b$. In summary, we have

$$
I_{y} \quad(\text { whole cross-section })=2\left(\frac{1}{12} t^{3} b+\frac{1}{4}(h+t)^{2} t b\right)+\frac{1}{12} d h^{3}=\frac{2}{3} t^{3} b+h t^{2} b+\frac{1}{2} h^{2} b t+\frac{1}{12} d h^{3} .
$$

Note that if $d, t \ll b, h$, then $I_{y} \approx \frac{1}{2} h^{2} b t+\frac{1}{12} d h^{3}$, i.e. the only significant contribution from $R 2$ and $R 3$ is due to the second term of the parallel axis theorem!

Question 2

A beam with cylindrical cross-section (radius r) is supported by two bearings, see below. A moment M is applied at one end. Calculate the maximum deflection! Where does it occur?

Solution: Reference:Gross, Hauger, Schröder, Wall, Technische Mechanik 2, 9th edition, Springer Vieweg (pages 122-123).

Recall that a structure is statically determinate if

$$
3 n-(r+v)=0
$$

where n is the number of bodies, r the number of reaction forces or moments of the supports, and v the number of forces or moments transmitted at links. Here $n=1, r=3, v=0 \rightarrow$ the structure is statically determinate.

From equilibrium, we have $A_{x}=0$ and $A_{z}=-B=-M / l$. The internal moment is

$$
M(x)=-x A_{z}=M \frac{x}{l}
$$

Let E be Young's modulus and I_{y} the second moment of area for bending about y. Integration of the differential equation of the bending line yields

$$
\begin{aligned}
E I_{y} w^{\prime \prime} & =-\frac{M}{l} x \\
E I_{y} w^{\prime} & =-\frac{M}{2 l} x^{2}+C_{1} \\
E I_{y} w & =-\frac{M}{6 l} x^{3}+C_{1} x+C_{2}
\end{aligned}
$$

The boundary conditions are $w(0)=0$ and $w(l)=0$. Inserting into the last equation gives $C_{2}=0$ and $C_{1}=\frac{M l}{6}$. Thus, we have

$$
w(x)=\frac{1}{E I_{y}}\left(-\frac{M}{6 l} x^{3}+\frac{M l}{6} x\right)
$$

The maximum value of w occurs at the position x^{*} where $w^{\prime}\left(x^{*}\right)=0$, i.e.

$$
-\frac{M}{2 l}\left(x^{*}\right)^{2}+\frac{M l}{6}=0 \rightarrow x^{*}=\frac{1}{\sqrt{3}} l .
$$

Thus

$$
w\left(x^{*}\right)=\frac{\sqrt{3} M l^{2}}{27 E I_{y}}
$$

For the circular cross-section, we have from exercise 1(b) $I_{y}=\frac{\pi}{4} r^{4}$. Inserting gives

$$
w\left(x^{*}\right)=\frac{4 \sqrt{3} M l^{2}}{27 \pi E r^{4}}
$$

Question 3

The beam shown below has the bending stiffness $E I$ and is subjected to a line load q_{0}. Calculate the reaction forces and the deflection of the beam!

Hint: If a system is hyperstatic it might be helpful to start from the Euler-Bernoulli equation before trying to determine the reaction forces.

Solution: This structure is composed of one element $(r=1)$ and four bearings, which create five reactions $(r=5)$. Testing for determinacy, we find

$$
\begin{equation*}
3 n-(r+v)=-2 \tag{1}
\end{equation*}
$$

i.e. the structure is hyperstatic. We cannot find all reactions by consideration of equilibrium alone. Thus, we will first solve the Euler-Bernoulli equation and then obtain the reactions from the solution.
There is a discontinuity at the support B, hence we need to find separate solutions for the two sectors $0 \leq x \leq \ell$ (sector 1) and $\ell \leq x \leq 2 \ell$ (sector 2). Let $w^{(1)}(x)$ be the deflection along z in sector 1 . There is no line load, hence

$$
\begin{align*}
E I w^{(1)^{\prime \prime \prime \prime}}(x) & =0 \tag{2}\\
E I w^{(1)^{\prime \prime \prime}}(x) & =C_{1}^{(1)} \tag{3}\\
E I w^{(1)^{\prime \prime}}(x) & =C_{1}^{(1)} x+C_{2}^{(1)}, \tag{4}\\
E I w^{(1)^{\prime}}(x) & =\frac{1}{2} C_{1}^{(1)} x^{2}+C_{2}^{(1)} x+C_{3}^{(1)}, \tag{5}\\
E I w^{(1)}(x) & =\frac{1}{6} C_{1}^{(1)} x^{3}+\frac{1}{2} C_{2}^{(1)} x^{2}+C_{3}^{(1)} x+C_{4}^{(1)} \tag{6}
\end{align*}
$$

where $C_{1}^{(1)}, C_{2}^{(1)}, C_{3}^{(1)}$, and $C_{4}^{(1)}$ are constants of integration.
In sector 2 , the line load is q_{0}, therefore

$$
\begin{align*}
E I w^{(2)^{\prime \prime \prime \prime}}(x) & =q_{0} \tag{7}\\
E I w^{(2)^{\prime \prime \prime}}(x) & =q_{0} x+C_{1}^{(2)} \tag{8}\\
E I w^{(2)^{\prime \prime}}(x) & =\frac{1}{2} q_{0} x^{2}+C_{1}^{(2)} x+C_{2}^{(2)} \tag{9}\\
E I w^{(2)^{\prime}}(x) & =\frac{1}{6} q_{0} x^{3}+\frac{1}{2} C_{1}^{(2)} x^{2}+C_{2}^{(2)} x+C_{3}^{(2)} \tag{10}\\
E I w^{(2)}(x) & =\frac{1}{24} q_{0} x^{4}+\frac{1}{6} C_{1}^{(2)} x^{3}+\frac{1}{2} C_{2}^{(2)} x^{2}+C_{3}^{(2)} x+C_{4}^{(2)} \tag{11}
\end{align*}
$$

where $C_{1}^{(2)}, C_{2}^{(2)}, C_{3}^{(2)}$, and $C_{4}^{(2)}$ are constants of integration.
The following boundary conditions apply:

$$
\begin{align*}
w^{(1)}(x=0) & =0 \quad(\text { beam is clamped) }, \\
w^{(1)}(x=0)^{\prime} & =0 \quad(\text { beam is clamped }) \\
w^{(1)}(x=l) & \left.=w^{(2)}(x=l)=0, \quad \text { (support at } B\right), \\
w^{(1)^{\prime}}(x=l) & =w^{(2)^{\prime}}(x=l), \quad(\text { no kink at } B), \tag{12}\\
w^{(1)^{\prime \prime}}(x=l) & =w^{(2)^{\prime \prime}}(x=l), \quad(\text { moment continuous at } B), \\
w^{(2)}(x=2 l) & =0 \quad(\text { support at } C) . \\
w^{(2)^{\prime \prime}}(x=2 l) & =0 \quad \text { (no moment at support } C) .
\end{align*}
$$

By using the first two boundary conditions, we find $C_{4}^{(1)}=C_{3}^{(1)}=0$. Inserting the third boundary condition in Eq. 6 , we get

$$
\begin{equation*}
C_{2}^{(1)}=-\frac{1}{3} C_{1}^{(1)} l \tag{13}
\end{equation*}
$$

$w^{(2)}(x=l)=0$ and $w^{(2)}(x=2 l)=0$ imply

$$
\begin{align*}
C_{4}^{(2)} & =-\left(\frac{1}{24} q_{0} l^{4}+\frac{1}{6} C_{1}^{(2)} l^{3}+\frac{1}{2} C_{2}^{(2)} l^{2}+C_{3}^{(2)} l\right) \tag{14}\\
C_{4}^{(2)} & =-\left(\frac{2}{3} q_{0} l^{4}+\frac{4}{3} C_{1}^{(2)}+2 C_{2}^{(2)} l^{2}+2 C_{3}^{(2)} l\right) \tag{15}
\end{align*}
$$

which can be combined to give

$$
\begin{align*}
C_{3}^{(2)} & =-\left(\frac{5}{8} q_{0} l^{3}+\frac{7}{6} C_{1}^{(2)} l^{2}+\frac{3}{2} C_{2}^{(2)} l\right) \tag{16}\\
C_{4}^{(2)} & =\frac{7}{12} q_{0} l^{4}+C_{1}^{(2)} l^{3}+C_{2}^{(2)} l^{2} \tag{17}
\end{align*}
$$

$w^{(2)^{\prime \prime}}(x=2 l)=0$ yields

$$
C_{2}^{(2)}=-2 q_{0} l^{2}-2 C_{1}^{(2)} l
$$

The only remaining unknowns are now $C_{1}^{(1)}$ and $C_{1}^{(2)}$. Thus far, we have

$$
\begin{aligned}
& E I w^{(1)}(x)=\frac{1}{6} C_{1}^{(1)}\left(x^{3}-l x^{2}\right) \\
& E I w^{(2)}(x)=-\frac{1}{24} q_{0} x^{4}+\frac{1}{6} C_{1}^{(2)} x^{3}-\left(q_{0} l+C_{1}^{(2)}\right) l x^{2}+\frac{19}{8} q_{0} l^{3} x+\frac{11}{6} C_{1}^{(2)} l^{2} x-\frac{17}{12} q_{0} l^{4}-C_{1}^{(2)} l^{3}
\end{aligned}
$$

Finally, the conditions $w^{(1)^{\prime}}(x=l)=w^{(2)^{\prime}}(x=l)$ and $w^{(1)^{\prime \prime}}(x=l)=w^{(2)^{\prime \prime}}(x=l)$ at B yield

$$
\begin{aligned}
C_{1}^{(1)} & =\frac{3}{28} q_{0} l \\
C_{1}^{(2)} & =-\frac{11}{7} q_{0} l
\end{aligned}
$$

The deflections are therefore

$$
\begin{aligned}
& w^{(1)}(x)=\frac{1}{E I}\left[\frac{1}{56} q_{0} l\left(x^{3}-l x^{2}\right)\right] \\
& w^{(2)}(x)=\frac{1}{E I}\left[-\frac{1}{24} q_{0} x^{4}-\frac{11}{42} q_{0} l x^{3}+\frac{4}{7} q_{0} l^{2} x^{2}+\frac{19}{8} q_{0} l^{3} x-\frac{121}{42} q_{0} l^{3} x-\frac{17}{12} q_{0} l^{4}+\frac{11}{7} q_{0} l^{4}\right]
\end{aligned}
$$

The reaction forces can be obtained from the derivatives of the deflections,

$$
\begin{aligned}
A_{z} & =-E I w^{(1)^{\prime \prime \prime}}(x=0)=-\frac{3}{28} q_{0} l \\
M_{A} & =-E I w^{(1)^{\prime \prime}}(x=0)=\frac{1}{28} q_{0} l^{2} \\
-C_{z} & =-E I w^{(2)^{\prime \prime \prime}}(x=2 l) \rightarrow C_{z}=\frac{3}{7} q_{0} l .
\end{aligned}
$$

$A_{x}=0$ and $B_{z}=\frac{19}{28} q_{0} l$ follow from equilibrium.

A final note: dividing the structure into different sectors and finding separate solutions, as was done here, can be a bit tedious. A shorter and more elegant solution is possible using Macaulay brackets (Föppel brackets), see Hauger, Lippmann, Mannl, Werner, Aufgaben zur Technischen Mechanik 1-3, 3d ed. Springer (p. 224-225).

