Micromechanics (Dr. Viacheslav Slesarenko, David Schwarz) exercise sheet 9 Winter term 2023/24

Exercise 9: Bending
11.12.2023 - 15.12.2023

OUESTION 1 .. e e
Calculate the second moment of area I, for the following profiles:
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« For the solution of (b) it is useful to consider the polar moment I, = [r?dA = [(y? + 2%)dA. From the
symmetry of the problem it follows that I, = I..

Hints:

« For the solution of (c) you can use the result from (a). Decompose the cross-section into rectangles and sum their
respective I, to get I, of the whole cross-section. You will need the parallel axis theorem (HUYGENS-STEINER
theorem), which says that the moment I for bending about an axis § that is parallel to y but separated by a
distance [ is Iy = I, + 12 A, where A is the area.

Solution: We need to compute the integral

I, = / 22dA

for the depicted cross-sections. We will need to specify what dA is in each case.

(a) b) 4 (c)
 dA=bdz -
) @ (h+t)/2
dz ‘ (h+t)/2
2 ]

dA=(r'+dr'Fm-rm

(a) The area element dA is a strip of width b and height dz.

dA = bdz
ne 1,
— I :/ z“bdz = —h°b
Y 12

(b) We'll start by calculating the polar moment I, = [ 7/2dA. Here, dA is a ring of thickness dr’. One can either
reason from the geometrical considerations how dA looks like

dA = (r' + dr")?m — r%1 = 2r'dr'm + dr’?7 =~ 2rdrn
= I, = / o 3dr! = Tyt
0 2
or one could remember cylindrical coordinates to find

dA = rdrdyp

27 T
= I, = / / rBdr'de = T
o Jo 2
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Now I, = [r?dA = [(y*+ 2%)dA = I,,+ I.. The cross-section is symmetric with respect to bending about y and
z. Therefore I, = I, = /21, = %7"4.
(c) We partition the cross-section into three rectangles R1, R2, and R3 (see above). The contribution of R1 can
be computed directly using the result from (a). For 2 and R3 we need the parallel axis theorem. The centers of
gravity of both rectangles are +(h + t)/2 away from the origin. Their contribution is therefore I, = L¢3b + [A,
with | = £(h +t)/2 and A = tb. In summary, we have

I, (whole cross-section) = 2 it?’b 4 1(h +1)2th ) + idh3 = g1f3b + ht?b + 1h2bt 4 ialh?’

Y 12 4 12 3 2 127

Note that if d,t < b, h, then I,, = %hzbt + %dh‘o’, i.e. the only significant contribution from R2 and R3 is due to
the second term of the parallel axis theorem!

OUESTION 2 . .. e
A beam with cylindrical cross-section (radius r) is supported by two bearings, see below. A moment M is applied at
one end. Calculate the maximum deflection! Where does it occur?
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Solution: Reference:Gross, Hauger, Schroder, Wall, Technische Mechanik 2, 9th edition, Springer Vieweg (pages
122-123).

Recall that a structure is statically determinate if

3n—(r+wv) =0,

where 7 is the number of bodies, r the number of reaction forces or moments of the supports, and v the number of
forces or moments transmitted at links. Here n = 1, » = 3, v = 0 — the structure is statically determinate.

A=l Sl
I V—* M

B

From equilibrium, we have A, = 0 and A, = —B = —M/I. The internal moment is

M(z) =—zA, = M%

Let £ be Young’s modulus and I, the second moment of area for bending about y. Integration of the differential
equation of the bending line yields

M
EIy’lUH = —71'

M
ElLw = —27:8 +C

M
Elyw = —ax3 aF Cl$ F CQ



Micromechanics (Dr. Viacheslav Slesarenko, David Schwarz) exercise sheet 9 Winter term 2023/24

The boundary conditions are w(0) = 0 and w(l) = 0. Inserting into the last equation gives Cy = 0 and C; = 2L,

6
Thus, we have
1 M 5 Ml

The maximum value of w occurs at the position 2* where w'(z*) = 0, i.e.

M

Ml
3 —=0—-2"=

*\2 1
(x)+6 Weis

Thus

w(z™) = V3ME
- 27EIL,°

For the circular cross-section, we have from exercise 1(b) I, = %7"4. Inserting gives

o A/BMI?
we™) = o Er

OUEStION 3 .. e
The beam shown below has the bending stiffness £/ and is subjected to a line load go. Calculate the reaction forces
and the deflection of the beam!

PR (Y
8

Hint: If a system is hyperstatic it might be helpful to start from the Euler-Bernoulli equation before trying to determine
the reaction forces.

Solution: This structure is composed of one element (r = 1) and four bearings, which create five reactions (r = 5).
Testing for determinacy, we find

3n— (r+v) =-2, (1)
i.e. the structure is hyperstatic. We cannot find all reactions by consideration of equilibrium alone. Thus, we will

first solve the Euler-Bernoulli equation and then obtain the reactions from the solution.

There is a discontinuity at the support B, hence we need to find separate solutions for the two sectors 0 < z < ¢
(sector 1) and £ < z < 2/ (sector 2). Let w(!) (z) be the deflection along z in sector 1. There is no line load, hence

EIw®"™ (z) =0, )
Elw®"(z) = c0, 3)
EIw®V"(2) =Mz + Y, (4)
1
Elw™ () = 501 + 03z + 05, 5)
1 1
EluV(z) = 201V’ + 5030a% + C5Pz +- Y, ©)
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where C£1), Cél), C?(,l), and Cil) are constants of integration.

In sector 2, the line load is ¢, therefore

"
EIw® " () = qo, (7)
EIw(Q)m(:E) = qor + C§2)7 (8)
1
EIw®"(z) = §qox2 +0Pz+ 0P, ©)
1 1
EIu® (@) = gaus? + 5070 + O + O, (0
1 1 1
BIw®(a) = o_goa* + 0P + 200 + 0Pz + O, (11)

where C’{Q), C’éz), C?(’z)’ and C’f) are constants of integration.

The following boundary conditions apply:

0 (beam is clamped),
!/
wM(z=0) =0 (beam is clamped),
( ) =w®(xz=1)=0, (supportatB),

w(l)/(m ={) = w(2)/(m =1), (nokink at B), (12)
w(Z)”(m =1), (moment continuous at B),

w® (x=20)=0 (supportat C).
0

(no moment at support C).

By using the first two boundary conditions, we find Cﬁl) = él) = 0. Inserting the third boundary condition in Eq.

6, we get

1
cit = —505”1. 13)

w? (z =1) = 0and w® (z = 2) = 0 imply

1 1 1
Cf) _ g0l + écf)l?) + 5052)12 + 03(,2)1) ’ (14)

24

!
o - (3
g

4
gl + 3052) +20212 4+ 20§2>1> , 15)

3
which can be combined to give
5 7 3
C5? =~ quol® + 518 + 20§2>z) : (16)

CP = —goit + PP + P2, (17)

12

w(2)”(x = 2[) = 0 yields

P = —2o1% — 20?1,
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The only remaining unknowns are now C§1) and C§2). Thus far, we have

1
EIwM (z) = 809) (z® —1z?),
17

12q014 — .

1 1 1 11
EIw®(z) = —ﬂqu4 4 60{2)273 - (qol I C’fg)) lz? + ggd% 4 ECPZ% =

"

Finally, the conditions w(l)/(:c =)= w(z)/(:c =) and w(l)/l(x =1) =w® (z =1) at B yield

3

1 _ 92
Cl - 28(]017
11
CP = —Zgol.
1 7 q0
The deflections are therefore
1 [1
(1) R 3 7.2
w ! (z) ol [56%[ (x lz )] ,
1 1 11 4 19 121 17 11
(2) e 4 _ - 13 = 122 - 13 _ e l3 _ -0 l4 - l4.
w' () EI[ g 20 1o d0t +7(J0 -+ g D0V T = 75790l — 15,40 + 7 40

The reaction forces can be obtained from the derivatives of the deflections,

" 3
A, = —EIw®W (z =0) = f%qol,
1
M = —Elw® (2 = 0) = aol?,
_C, = —ETw®"(z = 2) - C, = gl

7

A, =0and B, = %qol follow from equilibrium.
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A final note: dividing the structure into different sectors and finding separate solutions, as was done here, can be a
bit tedious. A shorter and more elegant solution is possible using MAcAuLAY brackets (FOPPEL brackets), see Hauger,
Lippmann, Mannl, Werner, Aufgaben zur Technischen Mechanik 1-3, 3d ed. Springer (p. 224-225).



