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Exercise 8: Stress and strain
04.12.2023 - 08.12.2023

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference: Barber, Elasticity, Springer (2010), p. 32
Plastic deformation during a manufacturing process generates a state of stress in the large body z > 0. If the stresses
are functions of z only and the surface z = 0 is not loaded, show that the stress components σyz , σzx, σzz must be
zero everywhere!

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Metal or semiconductor crystals may contain defects in their lattice structure called “dislocations”. These are very
important for understanding plastic deformation. A so-called “screw dislocation”, sketched in the figure, is created by
the following displacement
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Figure 1: screw dislocation from:
https://www.tf.uni -kiel.de/matwis/
amat/def en/kap 5/backbone/r5 2 2.html

Calculate the associated strain tensor ε and the stress tensor σ (using Hooke’s law)! Is the body in a state of plane
strain or plane stress? Do you notice something peculiar near the center of the dislocation at x = y = 0?

Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We now consider a state of plane strain. The governing equations are

εxx =
∂ux

∂x
, εyy =
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∂y
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)
(definition of strain),

σxx = 2µεxx + λ (εxx + εyy) , σyy = 2µεyy + λ (εxx + εyy) , σxy = 2µεxy (Hooke’s law),
∂σxx

∂x
+

∂σxy

∂y
+ Fx = 0,

∂σyy

∂y
+

∂σxy

∂x
+ Fy = 0, (equilibrium).

These are eight governing equations. However, we can combine them in such a way that we end up with only
two equations in terms of the displacement components ux and uy . This form is convenient for problems where
displacement components are prescribed over the entire boundary of the body. Find these two equations!

Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We want to demonstrate for the two-dimensional case that Hooke’s law with isotropic elastic constants is indeed
isotropic. Consider a 2D stress tensor σ and the corresponding strain ε,

σ =

[
σxx σxy

σxy σyy

]
, ε =

[
εxx εxy
εxy εyy

]
.

Next, consider the matrix for rotation by an arbitrary angle α

R =

[
cos(α) sin(α)
− sin(α) cos(α)

]
.

The most straightforward way to demonstrate isotropy would be to rotate the elastic stiffness tensor. However, this is
a fourth-order tensor and rotating it is cumbersome. Here, we take a different approach. In order to demonstrate
isotropy



Micromechanics (Dr. Viacheslav Slesarenko, David Schwarz) exercise sheet 8 Winter term 2023/24

1. express σ in terms of the components of ε,
2. rotate σ to find the representation σ′ of this state of stress in the new coordinate system,
3. replace the components of ε in σ′ by the components of the strain tensor ε′ in the rotated coordinate system.

You should see that the constants of proportionality between stress and strain — the elastic constants — are the same
in the new and the old coordinate system!


