Exercise 8: Stress and strain

04.12.2023-08.12.2023

Question 1

Reference: Barber, Elasticity, Springer (2010), p. 32
Plastic deformation during a manufacturing process generates a state of stress in the large body $z>0$. If the stresses are functions of z only and the surface $z=0$ is not loaded, show that the stress components $\sigma_{y z}, \sigma_{z x}, \sigma_{z z}$ must be zero everywhere!

Solution: In the absence of body forces, the equilibrium condition is

$$
\operatorname{div} \sigma=\left[\begin{array}{l}
\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}+\frac{\partial \sigma_{x z}}{\partial z} \\
\frac{\partial \sigma_{y x}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{y z}}{\partial z} \\
\frac{\partial \sigma_{z x}}{\partial x}+\frac{\partial \sigma_{z y}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}
\end{array}\right]=0 .
$$

Since all stress components are functions of z only, the equilibrium conditions simplifies to

$$
\left[\begin{array}{l}
\frac{\partial \sigma_{x z}}{\partial z} \\
\frac{\partial \sigma_{y z}}{\partial z} \\
\frac{\partial \sigma_{z z}}{\partial z}
\end{array}\right]=0 .
$$

Therefore $\sigma_{x z}, \sigma_{y z}$, and $\sigma_{z z}$ are constants. The boundary condition is that the surface is stress-free, i.e. $\sigma_{x z}=\sigma_{y z}=$ $\sigma_{z z}=0$ there. Hence these stresses must be zero everywhere.

Question 2

Metal or semiconductor crystals may contain defects in their lattice structure called "dislocations". These are very important for understanding plastic deformation. A so-called "screw dislocation", sketched in the figure, is created by the following displacement

$$
\mathbf{u}(x, y, z)=\left[\begin{array}{c}
0 \\
0 \\
\frac{b}{2 \pi} \arctan \left(\frac{y}{x}\right)
\end{array}\right]
$$

Figure 1: screw dislocation from: https://www.tf.uni -kiel.de/matwis/ amat/def_en/kap_5/backbone/r5_2_2.html

Calculate the associated strain tensor ε and the stress tensor σ (using Hooke's law)! Is the body in a state of plane strain or plane stress? Do you notice something peculiar near the center of the dislocation at $x=y=0$?

Solution: The strains are given by the equation

$$
\varepsilon_{i j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)
$$

we thus find

$$
\begin{aligned}
& \varepsilon_{x x}=\varepsilon_{y y}=\varepsilon_{z z}=\varepsilon_{x y}=\varepsilon_{y x}=0, \\
& \varepsilon_{x z}=\varepsilon_{z x}=-\frac{b}{4 \pi} \frac{y}{x^{2}+y^{2}} \\
& \varepsilon_{y z}=\varepsilon_{z y}=\frac{b}{4 \pi} \frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

and the stresses can be computed by the formula for isotropic materials given in the lecture

$$
\sigma_{i j}=\lambda \delta_{i j} \varepsilon_{k k}+2 \mu \varepsilon_{i j}
$$

to find

$$
\begin{aligned}
\sigma_{x x} & =\sigma_{y y}=\sigma_{z z}=\sigma_{x y}=\sigma_{y x}=0, \\
\sigma_{x z} & =\sigma_{z x}=-\frac{\mu b}{2 \pi} \frac{y}{x^{2}+y^{2}} \\
\sigma_{y z} & =\sigma_{z y}=\frac{\mu b}{2 \pi} \frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

The state of deformation is neither plane strain nor plane stress. Note that the fields diverge as $x, y \rightarrow 0$. Thus small strain elasticity breaks down in some region around $x=y=0$ and one needs to consider the atomic structure of the material to find the true state of deformation.

Question 3

We now consider a state of plane strain. The governing equations are

$$
\begin{array}{r}
\varepsilon_{x x}=\frac{\partial u_{x}}{\partial x}, \quad \varepsilon_{y y}=\frac{\partial u_{y}}{\partial y}, \quad \varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right) \quad \text { (definition of strain) } \\
\sigma_{x x}=2 \mu \varepsilon_{x x}+\lambda\left(\varepsilon_{x x}+\varepsilon_{y y}\right), \quad \sigma_{y y}=2 \mu \varepsilon_{y y}+\lambda\left(\varepsilon_{x x}+\varepsilon_{y y}\right), \quad \sigma_{x y}=2 \mu \varepsilon_{x y} \quad \text { (Hooke's law) } \\
\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}+F_{x}=0, \quad \frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{x y}}{\partial x}+F_{y}=0, \quad \text { (equilibrium). }
\end{array}
$$

These are eight governing equations. However, we can combine them in such a way that we end up with only two equations in terms of the displacement components u_{x} and u_{y}. This form is convenient for problems where displacement components are prescribed over the entire boundary of the body. Find these two equations!

Solution: By subsituting the strains into Hooke's law, one obtains

$$
\begin{aligned}
\sigma_{x x} & =\lambda\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}\right)+2 \mu \frac{\partial u_{x}}{\partial x} \\
\sigma_{y y} & =\lambda\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}\right)+2 \mu \frac{\partial u_{y}}{\partial y} \\
\sigma_{x y} & =\mu\left(\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}\right)
\end{aligned}
$$

Inserting these equations into the equilibrium conditions and eliminating stresses gives

$$
\begin{aligned}
& \mu\left(\frac{\partial^{2} u_{x}}{\partial x^{2}}+\frac{\partial^{2} u_{x}}{\partial y^{2}}\right)+(\lambda+\mu) \frac{\partial}{\partial x}\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}\right)+F_{x}=0 \\
& \mu\left(\frac{\partial^{2} u_{y}}{\partial x^{2}}+\frac{\partial^{2} u_{y}}{\partial y^{2}}\right)+(\lambda+\mu) \frac{\partial}{\partial y}\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}\right)+F_{y}=0
\end{aligned}
$$

These are the Navier-Cauchy equations for plane strain.

Question 4

We want to demonstrate for the two-dimensional case that Hooke's law with isotropic elastic constants is indeed isotropic. Consider a 2D stress tensor σ and the corresponding strain ε,

$$
\sigma=\left[\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y y}
\end{array}\right], \quad \varepsilon=\left[\begin{array}{ll}
\varepsilon_{x x} & \varepsilon_{x y} \\
\varepsilon_{x y} & \varepsilon_{y y}
\end{array}\right]
$$

Next, consider the matrix for rotation by an arbitrary angle α

$$
R=\left[\begin{array}{cc}
\cos (\alpha) & \sin (\alpha) \\
-\sin (\alpha) & \cos (\alpha)
\end{array}\right]
$$

The most straightforward way to demonstrate isotropy would be to rotate the elastic stiffness tensor. However, this is a fourth-order tensor and rotating it is cumbersome. Here, we take a different approach. In order to demonstrate isotropy

1. express σ in terms of the components of ε,
2. rotate σ to find the representation σ^{\prime} of this state of stress in the new coordinate system,
3. replace the components of ε in σ^{\prime} by the components of the strain tensor ε^{\prime} in the rotated coordinate system.

You should see that the constants of proportionality between stress and strain - the elastic constants - are the same in the new and the old coordinate system!

Solution:

1.)

$$
\begin{aligned}
\sigma_{i j} & =\lambda \delta_{i j} \varepsilon_{k k}+2 \mu \varepsilon_{i j} \\
\underline{\sigma} & =\left[\begin{array}{cc}
2 \mu \varepsilon_{x x}+\lambda\left(\varepsilon_{x x}+\varepsilon_{y y}\right) & 2 \mu \varepsilon_{x y} \\
2 \mu \varepsilon_{x y} & 2 \mu \varepsilon_{y y}+\lambda\left(\varepsilon_{x x}+\varepsilon_{y y}\right)
\end{array}\right]
\end{aligned}
$$

2.) Assuming that R is the matrix which, given the representation of a vector in the original coordinate system, yields the representation in the new coordinate system, we need to perform the following operation to find σ^{\prime} :

$$
\begin{aligned}
\sigma^{\prime} & =R \sigma R^{T} \quad \text { (matrix notation), or, equivalently, } \\
\sigma_{m n}^{\prime} & =R_{m i} R_{n j} \sigma_{i j} \quad \text { (index notation). }
\end{aligned}
$$

The result is

$$
\begin{aligned}
\sigma^{\prime} & =\left[\begin{array}{cc}
\cos (\alpha)^{2} \sigma_{x x}+\sin (2 \alpha) \sigma_{x y}+\sin (\alpha)^{2} \sigma_{y y} & \cos (2 \alpha) \sigma_{x y}-\cos (\alpha) \sin (\alpha)\left(\sigma_{x x}-\sigma_{y y}\right) \\
\cos (2 \alpha) \sigma_{x y}-\cos (\alpha) \sin (\alpha)\left(\sigma_{x x}-\sigma_{y y}\right) & \sin (\alpha)^{2} \sigma_{x x}-2 \sin (\alpha) \cos (\alpha) \sigma_{x y}+\cos (\alpha)^{2} \sigma_{y y}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\sigma_{x x}^{\prime} & \sigma_{x y}^{\prime} \\
\sigma_{x y}^{\prime} & \sigma_{y y}^{\prime}
\end{array}\right], \quad \text { with } \\
\sigma_{x x}^{\prime} & =\left(\varepsilon_{x x}+\varepsilon_{y y}\right)(\mu+\lambda)+\left(\varepsilon_{x x}-\varepsilon_{y y}\right) \mu \cos (2 \alpha)+2 \varepsilon_{x y} \mu \sin (2 \alpha), \\
\sigma_{y y}^{\prime} & =\left(\varepsilon_{x x}+\varepsilon_{y y}\right)(\mu+\lambda)-\left(\varepsilon_{x x}-\varepsilon_{y y}\right) \mu \cos (2 \alpha)-2 \varepsilon_{x y} \mu \sin (2 \alpha), \\
\sigma_{x y}^{\prime} & =\mu\left(2 \varepsilon_{x y} \cos (2 \alpha)-\left(\varepsilon_{x x}-\varepsilon_{y y}\right) \sin (2 \alpha)\right) .
\end{aligned}
$$

3.) To get the components of ε in terms of the components of ε^{\prime}, we need to consider the reverse sense of rotation, i.e. $\varepsilon=R^{T} \varepsilon^{\prime} R$. The transformation rules are the same for stress and strain, therefore the result can be obtained immediately by replacing $\alpha \rightarrow-\alpha, \sigma_{x x} \rightarrow \varepsilon_{x x}^{\prime}, \sigma_{x y} \rightarrow \varepsilon_{x y}^{\prime}$, and $\sigma_{y y} \rightarrow \varepsilon_{y y}^{\prime}$ in the matrix above,

$$
\varepsilon=\left[\begin{array}{cc}
\cos (\alpha)^{2} \varepsilon_{x x}^{\prime}-\sin (2 \alpha) \varepsilon_{x y}^{\prime}+\sin (\alpha)^{2} \varepsilon_{y y}^{\prime} & \cos (2 \alpha) \varepsilon_{x y}^{\prime}+\cos (\alpha) \sin (\alpha)\left(\varepsilon_{x x}^{\prime}-\varepsilon_{y y}^{\prime}\right) \\
\cos (2 \alpha) \varepsilon_{x y}^{\prime}+\cos (\alpha) \sin (\alpha)\left(\varepsilon_{x x}^{\prime}-\varepsilon_{y y}^{\prime}\right) & \sin (\alpha)^{2} \varepsilon_{x x}^{\prime}+2 \sin (\alpha) \cos (\alpha) \varepsilon_{x y}^{\prime}+\cos (\alpha)^{2} \varepsilon_{y y}^{\prime}
\end{array}\right] .
$$

Inserting the components of ε in the equations for $\sigma_{x x}^{\prime}, \sigma_{x y}^{\prime}$, and $\sigma_{y y}^{\prime}$, we obtain

$$
\sigma^{\prime}=\left[\begin{array}{cc}
2 \mu \varepsilon_{x x}^{\prime}+\lambda\left(\varepsilon_{x x}^{\prime}+\varepsilon_{y y}^{\prime}\right) & 2 \mu \varepsilon_{x y}^{\prime} \\
2 \mu \varepsilon_{x y}^{\prime} & 2 \mu \varepsilon_{y y}^{\prime}+\lambda\left(\varepsilon_{x x}^{\prime}+\varepsilon_{y y}^{\prime}\right)
\end{array}\right]
$$

We can see that the elastic constants are the same in the two coordinate systems.

