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Exercise 8: Stress and strain
04.12.2023 - 08.12.2023

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference: Barber, Elasticity, Springer (2010), p. 32
Plastic deformation during a manufacturing process generates a state of stress in the large body z > 0. If the stresses
are functions of z only and the surface z = 0 is not loaded, show that the stress components σyz , σzx, σzz must be
zero everywhere!

Solution: In the absence of body forces, the equilibrium condition is

div σ =


∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z
∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z

 = 0.

Since all stress components are functions of z only, the equilibrium conditions simplifies to
∂σxz

∂z
∂σyz

∂z
∂σzz

∂z

 = 0.

Therefore σxz , σyz , and σzz are constants. The boundary condition is that the surface is stress-free, i.e. σxz = σyz =
σzz = 0 there. Hence these stresses must be zero everywhere.

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Metal or semiconductor crystals may contain defects in their lattice structure called “dislocations”. These are very
important for understanding plastic deformation. A so-called “screw dislocation”, sketched in the figure, is created by
the following displacement

u(x, y, z) =

 0
0

b
2π arctan

(
y
x

)
 .

Figure 1: screw dislocation from:
https://www.tf.uni -kiel.de/matwis/
amat/def en/kap 5/backbone/r5 2 2.html

Calculate the associated strain tensor ε and the stress tensor σ (using Hooke’s law)! Is the body in a state of plane
strain or plane stress? Do you notice something peculiar near the center of the dislocation at x = y = 0?

Solution: The strains are given by the equation

εij =
1

2
(∂iuj + ∂jui)
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we thus find

εxx = εyy = εzz = εxy = εyx = 0,

εxz = εzx = − b

4π

y

x2 + y2
,

εyz = εzy =
b

4π

x

x2 + y2
,

and the stresses can be computed by the formula for isotropic materials given in the lecture

σij = λδijεkk + 2µεij

to find

σxx = σyy = σzz = σxy = σyx = 0,

σxz = σzx = −µb

2π

y

x2 + y2
,

σyz = σzy =
µb

2π

x

x2 + y2
.

The state of deformation is neither plane strain nor plane stress. Note that the fields diverge as x, y → 0. Thus small
strain elasticity breaks down in some region around x = y = 0 and one needs to consider the atomic structure of
the material to find the true state of deformation.

Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We now consider a state of plane strain. The governing equations are

εxx =
∂ux

∂x
, εyy =

∂uy

∂y
, εxy =

1

2

(
∂ux

∂y
+

∂uy

∂x

)
(definition of strain),

σxx = 2µεxx + λ (εxx + εyy) , σyy = 2µεyy + λ (εxx + εyy) , σxy = 2µεxy (Hooke’s law),
∂σxx

∂x
+

∂σxy

∂y
+ Fx = 0,

∂σyy

∂y
+

∂σxy

∂x
+ Fy = 0, (equilibrium).

These are eight governing equations. However, we can combine them in such a way that we end up with only
two equations in terms of the displacement components ux and uy . This form is convenient for problems where
displacement components are prescribed over the entire boundary of the body. Find these two equations!

Solution: By subsituting the strains into Hooke’s law, one obtains

σxx = λ

(
∂ux

∂x
+

∂uy

∂y

)
+ 2µ

∂ux

∂x
,

σyy = λ

(
∂ux

∂x
+

∂uy

∂y

)
+ 2µ

∂uy

∂y
,

σxy = µ

(
∂uy

∂x
+

∂ux

∂y

)
.

Inserting these equations into the equilibrium conditions and eliminating stresses gives

µ

(
∂2ux

∂x2
+

∂2ux

∂y2

)
+ (λ+ µ)

∂

∂x

(
∂ux

∂x
+

∂uy

∂y

)
+ Fx = 0,

µ

(
∂2uy

∂x2
+

∂2uy

∂y2

)
+ (λ+ µ)

∂

∂y

(
∂ux

∂x
+

∂uy

∂y

)
+ Fy = 0.

These are the Navier-Cauchy equations for plane strain.
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Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We want to demonstrate for the two-dimensional case that Hooke’s law with isotropic elastic constants is indeed
isotropic. Consider a 2D stress tensor σ and the corresponding strain ε,

σ =

[
σxx σxy

σxy σyy

]
, ε =

[
εxx εxy
εxy εyy

]
.

Next, consider the matrix for rotation by an arbitrary angle α

R =

[
cos(α) sin(α)
− sin(α) cos(α)

]
.

The most straightforward way to demonstrate isotropy would be to rotate the elastic stiffness tensor. However, this is
a fourth-order tensor and rotating it is cumbersome. Here, we take a different approach. In order to demonstrate
isotropy

1. express σ in terms of the components of ε,
2. rotate σ to find the representation σ′ of this state of stress in the new coordinate system,
3. replace the components of ε in σ′ by the components of the strain tensor ε′ in the rotated coordinate system.

You should see that the constants of proportionality between stress and strain — the elastic constants — are the same
in the new and the old coordinate system!

Solution:
1.)

σij = λδijεkk + 2µεij

σ =

[
2µεxx + λ (εxx + εyy) 2µεxy

2µεxy 2µεyy + λ (εxx + εyy)

]
2.) Assuming that R is the matrix which, given the representation of a vector in the original coordinate system,
yields the representation in the new coordinate system, we need to perform the following operation to find σ′:

σ′ = RσRT (matrix notation), or, equivalently,
σ′
mn = RmiRnjσij (index notation).

The result is

σ′ =

[
cos(α)2σxx + sin(2α)σxy + sin(α)2σyy cos(2α)σxy − cos(α) sin(α) (σxx − σyy)
cos(2α)σxy − cos(α) sin(α) (σxx − σyy) sin(α)2σxx − 2 sin(α) cos(α)σxy + cos(α)2σyy

]
=

[
σ′
xx σ′

xy

σ′
xy σ′

yy

]
, with

σ′
xx = (εxx + εyy) (µ+ λ) + (εxx − εyy)µ cos (2α) + 2εxyµ sin (2α),

σ′
yy = (εxx + εyy) (µ+ λ)− (εxx − εyy)µ cos (2α)− 2εxyµ sin (2α),

σ′
xy = µ (2εxy cos (2α)− (εxx − εyy) sin (2α)) .

3.) To get the components of ε in terms of the components of ε′, we need to consider the reverse sense of rotation,
i.e. ε = RT ε′R. The transformation rules are the same for stress and strain, therefore the result can be obtained
immediately by replacing α → −α, σxx → ε′xx, σxy → ε′xy , and σyy → ε′yy in the matrix above,

ε =

[
cos(α)2ε′xx − sin(2α)ε′xy + sin(α)2ε′yy cos(2α)ε′xy + cos(α) sin(α)

(
ε′xx − ε′yy

)
cos(2α)ε′xy + cos(α) sin(α)

(
ε′xx − ε′yy

)
sin(α)2ε′xx + 2 sin(α) cos(α)ε′xy + cos(α)2ε′yy

]
.
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Inserting the components of ε in the equations for σ′
xx, σ′

xy , and σ′
yy , we obtain

σ′ =

[
2µε′xx + λ

(
ε′xx + ε′yy

)
2µε′xy

2µε′xy 2µε′yy + λ
(
ε′xx + ε′yy

)] .
We can see that the elastic constants are the same in the two coordinate systems.


