Micromechanics (Dr. Viacheslav Slesarenko, David Schwarz) exercise sheet 8 Winter term 2023/24

Exercise 8: Stress and strain
04.12.2023 - 08.12.2023

OUESTION 1 ... e
Reference: Barber, Elasticity, Springer (2010), p. 32

Plastic deformation during a manufacturing process generates a state of stress in the large body z > 0. If the stresses
are functions of z only and the surface z = 0 is not loaded, show that the stress components 0., 0.4, 0, must be
zero everywhere!

Solution: In the absence of body forces, the equilibrium condition is
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Since all stress components are functions of z only, the equilibrium conditions simplifies to
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Therefore 0., 0y, and o, are constants. The boundary condition is that the surface is stress-free, i.e. 0, = 0y, =
0., = 0 there. Hence these stresses must be zero everywhere.

QUESTION 2 . . oo o

Metal or semiconductor crystals may contain defects in their lattice structure called “dislocations”. These are very

important for understanding plastic deformation. A so-called “screw dislocation”, sketched in the figure, is created by
the following displacement

Figure 1: screw dislocation from:
https://www.tf.uni -kiel.de/matwis/
amat/def_en/kap_5/backbone/r5_2_2.html

Calculate the associated strain tensor € and the stress tensor o (using Hooke’s law)! Is the body in a state of plane
strain or plane stress? Do you notice something peculiar near the center of the dislocation at x = y = 0?

Solution: The strains are given by the equation

1
eij = 5 (Oiuj + 9jui)
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we thus find

Exx = Eyy = €2z = Exy = Eyz = 07
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and the stresses can be computed by the formula for isotropic materials given in the lecture

Oij = )\(SijEkk I 2,u€ij
to find

Oxx = Oyy = Ozz = Ogy = Oyx — 0,

by
O-IZ _0.237 - 27T x2+y27
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The state of deformation is neither plane strain nor plane stress. Note that the fields diverge as x,y — 0. Thus small

strain elasticity breaks down in some region around # = y = 0 and one needs to consider the atomic structure of
the material to find the true state of deformation.

QU IO B . .
We now consider a state of plane strain. The governing equations are
O, Oy 1 (Ouy = Ouy
Cagx = ——, Eyy = , Epy = = ~ 4+ definition of strain),
o or W oy 2\ oy Or ( )

Opz = 20100 + N (Exw +Eyy) s Oyy = 20Eyy + A (Exa + Eyy) s Oay = 21y, (Hooke’s law),

ox * 0yy +F =0, a;u + axy + F, =0, (equilibrium).

These are eight governing equations. However, we can combine them in such a way that we end up with only
two equations in terms of the displacement components u, and u,. This form is convenient for problems where
displacement components are prescribed over the entire boundary of the body. Find these two equations!

Solution: By subsituting the strains into Hooke’s law, one obtains

o = A (a“w + 37”’) 4,0t
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Inserting these equations into the equilibrium conditions and eliminating stresses gives

0%u,  0%uy 0 [Ouy Ouy
”(aaﬂ + 8y2)+()\+'u)8x(8x + ay)+ =L
&uy  0%uy, 0 [Ouy  Ouy
— —= F,=0.
(5902 " 0y2>+(A+M)3y<3x i ay)+ g =t

These are the Navier-Cauchy equations for plane strain.
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OUESTION 4 . .
We want to demonstrate for the two-dimensional case that Hooke’s law with isotropic elastic constants is indeed
isotropic. Consider a 2D stress tensor ¢ and the corresponding strain ¢,

o= Ozx Ogxy , = Exx  Exy )
Ozy  Oyy Eay  Eyy
Next, consider the matrix for rotation by an arbitrary angle «

P [cos(a) sin(a)] .

—sin(a) cos(a)

The most straightforward way to demonstrate isotropy would be to rotate the elastic stiffness tensor. However, this is
a fourth-order tensor and rotating it is cumbersome. Here, we take a different approach. In order to demonstrate
isotropy

1. express o in terms of the components of ¢,

2. rotate o to find the representation ¢’ of this state of stress in the new coordinate system,

3. replace the components of € in ¢’ by the components of the strain tensor &’ in the rotated coordinate system.

You should see that the constants of proportionality between stress and strain — the elastic constants — are the same
in the new and the old coordinate system!

Solution:
1.)
Oij = )\5ij5kk aF 2/L€ij
o= Z:uezcac + A (59636 + Eyy) 2ﬂ€xy
B 2pEay 2peyy + A(aa + Eyy)

2.) Assuming that R is the matrix which, given the representation of a vector in the original coordinate system,
yields the representation in the new coordinate system, we need to perform the following operation to find o'

o' = RoRT (matrix notation), or, equivalently,

i n = BmiRypjo;; (index notation).
The result is

c0s()20 5 + sin(2a) o4y + sin(a)?oy, c0s(200) 05y — cos(a) sin(a) (00 — 0yy)
g = . . _ . 2 _ : 2
c08(200) 05y — cos(a) sin(a) (0zp — 0yy)  sin()? 04, — 28in(a) cos(a)ogy + cos(a) oy,
!/ !/
{Ui” ”iﬁy} , with
Tzy  Tyy
Opa = (Eaa + €yy) (1 + A) + (€20 — €yy) pc0s (20) + 2e4ypusin (20),

/

Oyy = (Exx + Eyy) (B + A) — (€2z — €yy) pcos (2a) — 2e4ypusin (2a),

Oy = M (2624 €08 (201) — (Eze — €yy) sin (20)) .

3.) To get the components of € in terms of the components of ¢/, we need to consider the reverse sense of rotation,
i.e.e = RT¢'R. The transformation rules are the same for stress and strain, therefore the result can be obtained

immediately by replacing & — —a, 04 = €4y, Oy — €, and 0,y — €, in the matrix above,
_ cos(a)?el, — sin(2a)el, + sin(a)’e), cos(2a)el,, + cos(a) sin(a) (e, — &),
cos(2a)e,, + cos(a) sin(a) (eh, —e},) sin(a)?el,, + 2sin(a) cos(a)el, + cos( )%e,,
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Inserting the components of ¢ in the equations for o/, , a;y, and a;y, we obtain
o [2mehs + A (fgm + 1) / 2u6;/y /
2pe gy gy + A (em + 8yy)

We can see that the elastic constants are the same in the two coordinate systems.



