Exercise 7: Strain
 27.11.2023-01.12.2023

Question 1

Consider the following displacement field,

$$
\mathbf{u}(x, y, z)=k\left[\begin{array}{c}
2 x+y^{2} \\
x^{2}-3 y^{2} \\
0
\end{array}\right]
$$

where k is a nonzero constant. Calculate the strain tensor ε !

Solution: The strain tensor ε was defined in the lecture by

$$
\varepsilon=\frac{1}{2}\left(\vec{\nabla} \vec{u}+(\vec{\nabla} \vec{u})^{T}\right) \quad \text { or in index notation } \quad \varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial r_{j}}+\frac{\partial u_{j}}{\partial r_{i}}\right)
$$

With this formulas you are able to compute each component of the strain tensor

$$
\begin{aligned}
& \varepsilon_{x x}=\frac{1}{2}\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{x}}{\partial x}\right)=\frac{\partial\left(2 x+y^{2}\right)}{\partial x}=2 k \\
& \varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)=\frac{1}{2}\left(\frac{\partial\left(2 x+y^{2}\right)}{\partial y}+\frac{\partial\left(x^{2}-3 y^{2}\right)}{\partial x}\right)=\frac{1}{2}(2 k y+2 k x)=k(x+y) \\
& \varepsilon_{y y}=\frac{1}{2}\left(\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{y}}{\partial y}\right)=\frac{\partial\left(x^{2}-3 y^{2}\right)}{\partial y}=-6 k y
\end{aligned}
$$

By using the symmetry of ε you only have to compute 6 entries and should find the following result

$$
\varepsilon=k\left[\begin{array}{ccc}
2 & x+y & 0 \\
x+y & -6 y & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Note that all components of ε involving the z-direction are zero. This situation is called plane strain.

Question 2

A solid bar with dimensions $l \times w \times w$ (see below) is stretched along its length to a final length $a l$. The volume of the bar does not change during deformation. Calculate the displacement vector \mathbf{u} and the strain tensor ε !

Solution: After stretching, the bar has a new width \hat{w}. However, the volume is conserved, therefore

$$
\hat{w}^{2} l a=w^{2} l \Longrightarrow \hat{w}=\frac{w}{\sqrt{a}} .
$$

We assume the bar deforms homogeneously. The displacement along the x-direction increases linearly from zero at $x=0$ to $(a-1) l$ at $x=l$. Similarly, the displacement in y-direction increases linearly from zero at $y=0$ to some maximum value at $y=w / 2$. The displacement in z-direction increases linearly from zero at $z=0$ to some maximum value at $z=w / 2$. The bar retains its square cross-section, i.e. the y-displacement does not depend on x and z, and the z-displacement does not depend on y and x. Therefore, the displacement vector can be written as

$$
\mathbf{u}=\left[\begin{array}{c}
(a-1) x \\
A y+B \\
C z+D
\end{array}\right]
$$

where A, B, C, D are constants that need to be determined by consideration of the boundary conditions. Since the y - and z-components are zero at $y=0$ and $z=0$, respectively, we see that $B=D=0$. The bar retains its square cross-section, i.e. the y-displacement at $y=w / 2$ must be equal to the z-displacement at $z=w / 2$. Therefore $A=C$. Recall that the new width after deformation is $\hat{w}=w / \sqrt{a}$. For this reason, the y-displacement at $y=w / 2$ must be equal to $(\hat{w}-w) / 2=(1 / \sqrt{a}-1) w / 2$. It must also be equal to $A w / 2$. Therefore $A=(1 / \sqrt{a}-1)$. In conclusion, the displacement vector is

$$
\mathbf{u}=\left[\begin{array}{c}
(a-1) x \\
\left(\frac{1}{\sqrt{a}}-1\right) y \\
\left(\frac{1}{\sqrt{a}}-1\right) z
\end{array}\right]
$$

Through differentiation, we obtain the strain tensor

$$
\varepsilon=\left[\begin{array}{ccc}
a-1 & 0 & 0 \\
0 & \frac{1}{\sqrt{a}}-1 & 0 \\
0 & 0 & \frac{1}{\sqrt{a}}-1
\end{array}\right]
$$

Question 3

(Saint-Venant's compatibility conditions)
The strain tensor ε has six distinct components. However, these six components are computed from only three components of the displacement vector \mathbf{u}. Thus, if we want to solve for the components of \mathbf{u} given the component of ε, we have six equations for three unknowns. For this system of equations to have a solution, some of the strain components must be related. Show that they are by considering their second derivatives! For example, differentiate $\varepsilon_{x x}$ twice with respect to $y, \varepsilon_{y y}$ twice with respect to x and $\varepsilon_{x y}$ with respect to x and y, and compare!

Solution: Recall the definition of the aforementioned strain components,

$$
\begin{aligned}
\varepsilon_{x x} & =\frac{\partial u_{x}}{\partial x} \\
\varepsilon_{y y} & =\frac{\partial u_{y}}{\partial y} \\
\varepsilon_{x y} & =\frac{1}{2}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\frac{\partial^{2} \varepsilon_{x x}}{\partial y^{2}} & =\frac{\partial^{3} u_{x}}{\partial x \partial y^{2}} \\
\frac{\partial^{2} \varepsilon_{y y}}{\partial x^{2}} & =\frac{\partial^{3} u_{y}}{\partial y \partial x^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y} & =\frac{1}{2} \frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right) \\
& =\frac{1}{2}\left(\frac{\partial^{3} u_{x}}{\partial y^{2} \partial x}+\frac{\partial^{3} u_{y}}{\partial x^{2} \partial y}\right)
\end{aligned}
$$

The order of differentiation in the last equation is immaterial, hence we see that

$$
\frac{\partial^{2} \varepsilon_{x x}}{\partial y^{2}}+\frac{\partial^{2} \varepsilon_{y y}}{\partial x^{2}}=2 \frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y}
$$

Two more equations of this form can be obtained by repeating this procedure for $\varepsilon_{y y}, \varepsilon_{z z}$, and $\varepsilon_{y z}$, and for $\varepsilon_{x x}, \varepsilon_{z z}$, and $\varepsilon_{x z}$. This is tantamount to cyclic permutations of the indices, $x \rightarrow y, y \rightarrow z$, and $z \rightarrow x$.
Three more equations can be obtained by considering mixed derivatives of type

$$
\frac{\partial^{2} \varepsilon_{x x}}{\partial y \partial z}=\frac{\partial^{3} u_{x}}{\partial x \partial y \partial z}
$$

Again, order of differentiation is immaterial, hence

$$
\begin{aligned}
\frac{\partial^{3} u_{x}}{\partial x \partial y \partial z} & =\frac{\partial^{2}}{\partial x \partial z}\left(\frac{\partial u_{x}}{\partial y}\right) \\
& =\frac{\partial^{2}}{\partial x \partial z}\left(2 \varepsilon_{x y}-\frac{\partial u_{y}}{\partial x}\right) \\
& =\frac{\partial}{\partial x}\left(2 \frac{\partial \varepsilon_{x y}}{\partial z}-\frac{\partial^{2} u_{y}}{\partial x \partial z}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial^{3} u_{x}}{\partial x \partial y \partial z} & =\frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial u_{x}}{\partial z}\right) \\
& =\frac{\partial^{2}}{\partial x \partial y}\left(2 \varepsilon_{x z}-\frac{\partial u_{z}}{\partial x}\right) \\
& =\frac{\partial}{\partial x}\left(2 \frac{\partial \varepsilon_{x z}}{\partial y}-\frac{\partial^{2} u_{z}}{\partial x \partial y}\right)
\end{aligned}
$$

Combing gives

$$
\begin{aligned}
2 \frac{\partial^{3} u_{x}}{\partial x \partial y \partial z} & =\frac{\partial}{\partial x}\left(2 \frac{\partial \varepsilon_{x y}}{\partial z}-\frac{\partial^{2} u_{y}}{\partial x \partial z}\right)+\frac{\partial}{\partial x}\left(2 \frac{\partial \varepsilon_{x z}}{\partial y}-\frac{\partial^{2} u_{z}}{\partial x \partial y}\right) \\
& =\frac{\partial}{\partial x}\left(2 \frac{\partial \varepsilon_{x y}}{\partial z}+2 \frac{\partial \varepsilon_{x z}}{\partial y}-\frac{\partial u_{y}}{\partial z}-\frac{\partial u_{z}}{\partial y}\right) \\
& =2 \frac{\partial}{\partial x}\left(\frac{\partial \varepsilon_{x y}}{\partial z}+\frac{\partial \varepsilon_{x z}}{\partial y}-\frac{\partial \varepsilon_{y z}}{\partial x}\right)
\end{aligned}
$$

Finally,

$$
\frac{\partial^{2} \varepsilon_{x x}}{\partial y \partial z}=\frac{\partial}{\partial x}\left(\frac{\partial \varepsilon_{x y}}{\partial z}+\frac{\partial \varepsilon_{x z}}{\partial y}-\frac{\partial \varepsilon_{y z}}{\partial x}\right)
$$

The other two equations of this type can be obtained by cyclic permutation of the indices, $x \rightarrow y, y \rightarrow z$, and $z \rightarrow x$. The six compatibility conditions are therefore

$$
\begin{align*}
2 \frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y} & =\frac{\partial^{2} \varepsilon_{x x}}{\partial y^{2}}+\frac{\partial^{2} \varepsilon_{y y}}{\partial x^{2}} \quad \text { (a) } \\
2 \frac{\partial^{2} \varepsilon_{y z}}{\partial y \partial z} & =\frac{\partial^{2} \varepsilon_{y y}}{\partial z^{2}}+\frac{\partial^{2} \varepsilon_{z z}}{\partial y^{2}} \quad \text { (b) } \\
2 \frac{\partial^{2} \varepsilon_{z x}}{\partial z \partial x} & =\frac{\partial^{2} \varepsilon_{z z}}{\partial x^{2}}+\frac{\partial^{2} \varepsilon_{x x}}{\partial z^{2}} \quad \text { (c), } \\
\frac{\partial^{2} \varepsilon_{x x}}{\partial y \partial z} & =\frac{\partial}{\partial x}\left(\frac{\partial \varepsilon_{x y}}{\partial z}+\frac{\partial \varepsilon_{x z}}{\partial y}-\frac{\partial \varepsilon_{y z}}{\partial x}\right) \quad \text { (d) } \tag{d}\\
\frac{\partial^{2} \varepsilon_{y y}}{\partial z \partial x} & =\frac{\partial}{\partial y}\left(\frac{\partial \varepsilon_{y z}}{\partial x}+\frac{\partial \varepsilon_{y x}}{\partial z}-\frac{\partial \varepsilon_{z x}}{\partial y}\right) \quad \text { (e) } \\
\frac{\partial^{2} \varepsilon_{z z}}{\partial x \partial y} & =\frac{\partial}{\partial z}\left(\frac{\partial \varepsilon_{z x}}{\partial y}+\frac{\partial \varepsilon_{z y}}{\partial x}-\frac{\partial \varepsilon_{x y}}{\partial z}\right) \quad \text { (f). } \tag{f}
\end{align*}
$$

(e),

Question 4

In the first question, you computed the strain tensor ε for displacement field

$$
\mathbf{u}(x, y, z)=k\left[\begin{array}{c}
2 x+y^{2} \\
x^{2}-3 y^{2} \\
0
\end{array}\right]
$$

Now show that ε fulfills the compatibility conditions!

Solution: Recall that

$$
\varepsilon=k H\left[\begin{array}{ccc}
2 & x+y & 0 \\
x+y & -6 y & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Note that all components of ε involving the z-direction are zero (plane strain). All derivatives with respect to z are zero. Moreover, ε is linear in x and y. Therefore, all terms of the type $\partial^{2}(\ldots) / \partial x^{2}$ and $\partial^{2}(\ldots) / \partial y^{2}$ are zero. The only non zero term that is left over is $\frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y}$. We can inspect this term in the first condition (a)

$$
\begin{array}{rlrl}
2 \frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y} & =0+0 \\
\Leftrightarrow & & 2 \frac{\partial}{\partial y}\left(\frac{\partial \varepsilon_{x y}}{\partial x}\right) & =0 \\
\Leftrightarrow & 2 \frac{\partial}{\partial y}(1) & =0 \\
\Leftrightarrow & & 0 & =0 \quad \mathrm{OK}!
\end{array}
$$

so the derivative $\frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y}=0$. Thus, we can immediately see that conditions (b)-(f) are fulfilled. Therefore the strains are compatible.

