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Exercise 7: Strain
27.11.2023 - 01.12.2023

S tIOML L .o
Consider the following displacement field,

2z + y?
u<xay7’z) = k ‘TZ 733/2 )
0

where k is a nonzero constant. Calculate the strain tensor &!

Solution: The strain tensor € was defined in the lecture by
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With this formulas you are able to compute each component of the strain tensor
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By using the symmetry of € you only have to compute 6 entries and should find the following result

2 z+y 0
e=kl|lz+y -6y O
0 0 0

Note that all components of ¢ involving the z-direction are zero. This situation is called plane strain.

QUESTION 2 .. e e
A solid bar with dimensions [ X w x w (see below) is stretched along its length to a final length al. The volume of the
bar does not change during deformation. Calculate the displacement vector u and the strain tensor ¢!
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Solution: After stretching, the bar has a new width w. However, the volume is conserved, therefore

W’la = w’l = = .
Vva
We assume the bar deforms homogeneously. The displacement along the x-direction increases linearly from zero
atz = 0to (a — 1)l at z = [. Similarly, the displacement in y-direction increases linearly from zero at y = 0 to
some maximum value at y = w/2. The displacement in z-direction increases linearly from zero at z = 0 to some
maximum value at z = w/2. The bar retains its square cross-section, i.e. the y-displacement does not depend on z
and z, and the z-displacement does not depend on y and x. Therefore, the displacement vector can be written as

(a — 1)z
u= (Ay+ B |,
Cz+D

where A, B, C, D are constants that need to be determined by consideration of the boundary conditions. Since
the y- and z- components are zero at y = 0 and z = 0, respectively, we see that B = D = 0. The bar retains its
square cross-section, i.e. the y-displacement at y = w/2 must be equal to the z-displacement at z = w/2. Therefore
A = C. Recall that the new width after deformation is @ = w/+/a. For this reason, the y-displacement at y = w/2
must be equal to (0 — w)/2 = (1/4/a — 1)w/2. It must also be equal to Aw/2. Therefore A = (1/y/a — 1). In
conclusion, the displacement vector is

(a— 1)z
1 PR
ﬁ ]. z
Through differentiation, we obtain the strain tensor
a—1 0 0
c—1| 0 ﬁ -1 0
1
0 0 == 1

OUEStIOM 3 .. e
(Saint-Venant’s compatibility conditions)

The strain tensor ¢ has six distinct components. However, these six components are computed from only three
components of the displacement vector u. Thus, if we want to solve for the components of u given the component
of €, we have six equations for three unknowns. For this system of equations to have a solution, some of the strain
components must be related. Show that they are by considering their second derivatives! For example, differentiate
€z twice with respect to y, €y, twice with respect to = and €., with respect to x and ¥, and compare!

Solution: Recall the definition of the aforementioned strain components,

Ouy
e = Ty
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Eyy = —,
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Thus,
Oeee  BPug
oy 0xdy?’
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and
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The order of differentiation in the last equation is immaterial, hence we see that

2 2 2
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Two more equations of this form can be obtained by repeating this procedure for €, €., and €., and for .4, €.,

and €,.. This is tantamount to cyclic permutations of the indices, x — y, y — z, and z — z.

Three more equations can be obtained by considering mixed derivatives of type

2 3
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Again, order of differentiation is immaterial, hence
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Similarly,
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Combing gives
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Finally,
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The other two equations of this type can be obtained by cyclic permutation of the indices, z — y, y — 2,and z — z.
The six compatibility conditions are therefore
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OUESTION 4 . . e
In the first question, you computed the strain tensor ¢ for displacement field
2z + 3>
u(r,y,z) =k |2* — 3y°
0
Now show that ¢ fulfills the compatibility conditions!
Solution: Recall that
2 z+y O
e=kH |z4+y —6y 0
0 0 0

Note that all components of € involving the z-direction are zero (plane strain). All derivatives with respect to z are

zero. Moreover, ¢ is linear in = and y. Therefore, all terms of the type 02(...)/dx? and 0?(...)/dy? are zero. The

2
only non zero term that is left over is %;5;’ . We can inspect this term in the first condition (a)
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2|
so the derivative %;g; = 0. Thus, we can immediately see that conditions (b)—(f) are fulfilled. Therefore the strains

are compatible.




