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Exercise 7: Strain
27.11.2023 - 01.12.2023

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consider the following displacement field,

u(x, y, z) = k

 2x+ y2

x2 − 3y2

0

 ,

where k is a nonzero constant. Calculate the strain tensor ε!

Solution: The strain tensor ε was defined in the lecture by

ε =
1

2

(
∇⃗u⃗+

(
∇⃗u⃗

)T
)

or in index notation εij =
1

2

(
∂ui

∂rj
+

∂uj

∂ri

)
With this formulas you are able to compute each component of the strain tensor

εxx =
1

2

(
∂ux

∂x
+

∂ux

∂x

)
=

∂(2x+ y2)

∂x
= 2k

εxy =
1

2

(
∂ux

∂y
+

∂uy

∂x

)
=

1

2

(
∂(2x+ y2)

∂y
+

∂(x2 − 3y2)

∂x

)
=

1

2
(2ky + 2kx) = k(x+ y)

εyy =
1

2

(
∂uy

∂y
+

∂uy

∂y

)
=

∂(x2 − 3y2)

∂y
= −6ky

. . .

By using the symmetry of ε you only have to compute 6 entries and should find the following result

ε = k

 2 x+ y 0
x+ y −6y 0
0 0 0

 .

Note that all components of ε involving the z-direction are zero. This situation is called plane strain.

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A solid bar with dimensions l×w×w (see below) is stretched along its length to a final length al. The volume of the
bar does not change during deformation. Calculate the displacement vector u and the strain tensor ε!

x

w

w
l

al

deformed

y
z

undeformed
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Solution: After stretching, the bar has a new width ŵ. However, the volume is conserved, therefore

ŵ2la = w2l =⇒ ŵ =
w√
a
.

We assume the bar deforms homogeneously. The displacement along the x-direction increases linearly from zero
at x = 0 to (a − 1)l at x = l. Similarly, the displacement in y-direction increases linearly from zero at y = 0 to
some maximum value at y = w/2. The displacement in z-direction increases linearly from zero at z = 0 to some
maximum value at z = w/2. The bar retains its square cross-section, i.e. the y-displacement does not depend on x
and z, and the z-displacement does not depend on y and x. Therefore, the displacement vector can be written as

u =

(a− 1)x
Ay +B
Cz +D

 ,

where A, B, C , D are constants that need to be determined by consideration of the boundary conditions. Since
the y- and z- components are zero at y = 0 and z = 0, respectively, we see that B = D = 0. The bar retains its
square cross-section, i.e. the y-displacement at y = w/2 must be equal to the z-displacement at z = w/2. Therefore
A = C . Recall that the new width after deformation is ŵ = w/

√
a. For this reason, the y-displacement at y = w/2

must be equal to (ŵ − w)/2 = (1/
√
a − 1)w/2. It must also be equal to Aw/2. Therefore A = (1/

√
a − 1). In

conclusion, the displacement vector is

u =


(a− 1)x(
1√
a
− 1

)
y(

1√
a
− 1

)
z

 .

Through differentiation, we obtain the strain tensor

ε =

a− 1 0 0
0 1√

a
− 1 0

0 0 1√
a
− 1

 .

Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Saint-Venant’s compatibility conditions)
The strain tensor ε has six distinct components. However, these six components are computed from only three
components of the displacement vector u. Thus, if we want to solve for the components of u given the component
of ε, we have six equations for three unknowns. For this system of equations to have a solution, some of the strain
components must be related. Show that they are by considering their second derivatives! For example, differentiate
εxx twice with respect to y, εyy twice with respect to x and εxy with respect to x and y, and compare!

Solution: Recall the definition of the aforementioned strain components,

εxx =
∂ux

∂x
,

εyy =
∂uy

∂y
,

εxy =
1

2

(
∂ux

∂y
+

∂uy

∂x

)
.
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Thus,

∂2εxx
∂y2

=
∂3ux

∂x∂y2
,

∂2εyy
∂x2

=
∂3uy

∂y∂x2
,

and

∂2εxy
∂x∂y

=
1

2

∂2

∂x∂y

(
∂ux

∂y
+

∂uy

∂x

)
,

=
1

2

(
∂3ux

∂y2∂x
+

∂3uy

∂x2∂y

)
.

The order of differentiation in the last equation is immaterial, hence we see that

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

.

Two more equations of this form can be obtained by repeating this procedure for εyy , εzz , and εyz , and for εxx, εzz ,
and εxz . This is tantamount to cyclic permutations of the indices, x → y, y → z, and z → x.
Three more equations can be obtained by considering mixed derivatives of type

∂2εxx
∂y∂z

=
∂3ux

∂x∂y∂z
.

Again, order of differentiation is immaterial, hence

∂3ux

∂x∂y∂z
=

∂2

∂x∂z

(
∂ux

∂y

)
=

∂2

∂x∂z

(
2εxy −

∂uy

∂x

)
=

∂

∂x

(
2
∂εxy
∂z

− ∂2uy

∂x∂z

)
.

Similarly,

∂3ux

∂x∂y∂z
=

∂2

∂x∂y

(
∂ux

∂z

)
=

∂2

∂x∂y

(
2εxz −

∂uz

∂x

)
=

∂

∂x

(
2
∂εxz
∂y

− ∂2uz

∂x∂y

)
.

Combing gives

2
∂3ux

∂x∂y∂z
=

∂

∂x

(
2
∂εxy
∂z

− ∂2uy

∂x∂z

)
+

∂

∂x

(
2
∂εxz
∂y

− ∂2uz

∂x∂y

)
=

∂

∂x

(
2
∂εxy
∂z

+ 2
∂εxz
∂y

− ∂uy

∂z
− ∂uz

∂y

)
= 2

∂

∂x

(
∂εxy
∂z

+
∂εxz
∂y

− ∂εyz
∂x

)
.
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Finally,

∂2εxx
∂y∂z

=
∂

∂x

(
∂εxy
∂z

+
∂εxz
∂y

− ∂εyz
∂x

)
The other two equations of this type can be obtained by cyclic permutation of the indices, x → y, y → z, and z → x.
The six compatibility conditions are therefore

2
∂2εxy
∂x∂y

=
∂2εxx
∂y2

+
∂2εyy
∂x2

(a),

2
∂2εyz
∂y∂z

=
∂2εyy
∂z2

+
∂2εzz
∂y2

(b),

2
∂2εzx
∂z∂x

=
∂2εzz
∂x2

+
∂2εxx
∂z2

(c),

∂2εxx
∂y∂z

=
∂

∂x

(
∂εxy
∂z

+
∂εxz
∂y

− ∂εyz
∂x

)
(d),

∂2εyy
∂z∂x

=
∂

∂y

(
∂εyz
∂x

+
∂εyx
∂z

− ∂εzx
∂y

)
(e),

∂2εzz
∂x∂y

=
∂

∂z

(
∂εzx
∂y

+
∂εzy
∂x

− ∂εxy
∂z

)
(f).

Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In the first question, you computed the strain tensor ε for displacement field

u(x, y, z) = k

 2x+ y2

x2 − 3y2

0

 .

Now show that ε fulfills the compatibility conditions!

Solution: Recall that

ε = kH

 2 x+ y 0
x+ y −6y 0
0 0 0

 .

Note that all components of ε involving the z-direction are zero (plane strain). All derivatives with respect to z are
zero. Moreover, ε is linear in x and y. Therefore, all terms of the type ∂2(. . . )/∂x2 and ∂2(. . . )/∂y2 are zero. The
only non zero term that is left over is ∂2εxy

∂x∂y . We can inspect this term in the first condition (a)

2
∂2εxy
∂x∂y

= 0 + 0

⇔ 2
∂

∂y

(
∂εxy
∂x

)
= 0

⇔ 2
∂

∂y
(1) = 0

⇔ 0 = 0 OK!

so the derivative ∂2εxy

∂x∂y = 0. Thus, we can immediately see that conditions (b)–(f) are fulfilled. Therefore the strains
are compatible.


