Exercise 2: Basic structural mechanics

23.10.2023-27.10.2023

This exercise deals with elementary concepts in structural mechanics. Below is a short reminder of common supports and joint types, which may be useful in this context.
some common support types and their reaction forces

fixed support (Einspannung)

some common joint types and the forces/moments they transmit

hinge joint
(Momentengelenk)

shear hinge joint
(Querkraftgelenk)

normal hinge joint
(Normalkraftgelenk)

pendulum rod
(Pendelstütze)

Recall that a $2 D$ structure is statically determinate if

$$
3 n-(r+v)=0
$$

where n is the number of bodies, r the number of reaction forces or moments of the supports, and v the number of forces or moments transmitted at links. If this sum is greater than zero, then the system has unconstrained degrees of freedom, i.e. it can move. If the sum is less than zero, then the system is statically indeterminate. Keep in mind degenerate cases, which were discussed in class!

Question 1

Are the following systems statically determinate? Which of these are over- or underconstrained?

Solution:

(a) $n=1, r=5, v=0 \quad 3 \times 1-(5+0)=-2 \Longrightarrow$ overconstrained
(b) $n=1, r=3, v=0 \quad 3 \times 1-(3+0)=0 \Longrightarrow$ statically determinate
(c) $n=1, r=4, v=0 \quad 3 \times 1-(4+0)=-1 \Longrightarrow$ overconstrained
(d) $n=1, r=2, v=0 \quad 3 \times 1-(2+0)=1 \Longrightarrow$ underconstrained

Question 2

For the structure below, calculate the reaction forces, as well as the internal forces and moments. Note that the positive y-direction points out of the plane of the paper.

Solution: $n=1, r=3, v=0, \quad 3 \times 1-(3+0)=0 \Longrightarrow$ the structure is statically determinate. We will require equilibrium of the whole structure to determine the reaction forces:

$$
\begin{align*}
& \rightarrow \quad R_{1 x}+\frac{\sqrt{3}}{2} F=0 \quad \Longrightarrow R_{1 x}=-\frac{\sqrt{3}}{2} F \\
& \uparrow R_{1 z}-\frac{1}{2} F+R_{2 z}=0 \Longrightarrow R_{1 z}=\frac{1}{2} F-R_{2 z} \\
& \text { (1) } \quad-\frac{a}{2} \frac{1}{2} F+R_{2 z} a=0 \Longrightarrow R_{2 z}=\frac{1}{4} F \tag{1}\\
& \Longrightarrow R_{1 z}=\frac{1}{4} F
\end{align*}
$$

We will cut the bar left of the point where F is applied and require equilibrium for this section to determine the internal forces and moment there:

$$
\begin{aligned}
& \text { (} \quad \Longrightarrow \mathrm{N}(\mathrm{x}) \\
& \rightarrow \quad R_{1 x}+N(x)=0 \quad \Longrightarrow(x)=-R_{1 x}=\frac{\sqrt{3}}{2} F \\
& \uparrow \quad R_{1 z}-Q(x)=0 \quad \Longrightarrow Q(x)=R_{1 z}=\frac{1}{4} F \\
& \text { (S) } \quad-R_{1 z} x+M(x)=0 \Longrightarrow M(x)=R_{1 z} x=\frac{x}{4} F
\end{aligned}
$$

We will cut the bar right of the point where F is applied and require equilibrium for this section to determine the internal forces and moment there:

$$
\begin{aligned}
& \text { (} \quad \Longrightarrow N(x)=-R_{1 x}-\frac{\sqrt{3}}{2} F=\frac{\sqrt{3}}{2} F-\frac{\sqrt{3}}{2} F=0 \\
& \rightarrow \quad R_{1 x}+\frac{\sqrt{3}}{2} F+N(x)=0 \\
& \uparrow \quad R_{1 z}-\frac{1}{2} F-Q(x)=0 \\
& \text { S } \quad-R_{1 z} x+\frac{1}{2} F\left(x-\frac{a}{2}\right)+M(x)=0 \Longrightarrow Q(x)=R_{1 z}-\frac{1}{2} F=-\frac{1}{4} F
\end{aligned}
$$

Note that $M(x=a)=0$, as we would expect.

Question 3

Check whether the following systems are statically determinate! Note that they contain hinges.

Solution:

(a) $n=2, r=4, v=2 \quad 3 \times 2-(4+2)=0 \Longrightarrow$ statically determinate
(b) $n=2, r=4, v=2 \quad 3 \times 2-(4+2)=0 \Longrightarrow$ statically determinate
(c) $n=3, r=4, v=4 \quad 3 \times 3-(4+4)=1 \Longrightarrow$ underconstrained

Question 4

For the two problems below you should (i) check whether they are statically determinate, and (ii) calculate the reaction forces at the supports. Use the indicated coordinate system (blue)! Note that the positive y-direction points out of the plane of the paper. Hint: problem (b) is slightly more complicated than (a) because here the structure consists of two bars, not one. Cut the structure at the hinge G, and write the equilibrium conditions for the bars A-G and B-G separately. Don't forget the two forces that are transmitted at the hinge when you make the cut! You can afterwards check your solution by considering the equilibrium conditions for the complete structure.

Solution:

a) Reference: this exercise was adapted from: Gross, Ehlers, Wriggers, Schröder, Müller, Formeln und Aufgaben zur technischen Mechanik 1, 12th edition, Springer Verlag (page 57).
$n=1, r=3, v=0, \quad 3 \times 1-(3+0)=0 \Longrightarrow$ statically determinate. We will require equilibrium of the whole structure to determine the reaction forces. Note that the line of action of F_{2} goes through bearing A. Moreover, keep in mind that $\cos \left(45^{\circ}\right)=\sin \left(45^{\circ}\right)=1 / \sqrt{2}$.

(A) $2 a B_{z}-2 a F_{1}=0 \quad \Longrightarrow B=F_{1}$
$\uparrow \quad A_{z}+B-F_{2} \frac{1}{\sqrt{2}}=0 \quad \Longrightarrow A_{z}=F_{2} \frac{1}{\sqrt{2}}-F_{1}$
$\rightarrow \quad A_{x}+F_{1}-F_{2} \frac{1}{\sqrt{2}}=0 \Longrightarrow A_{x}=F_{2} \frac{1}{\sqrt{2}}-F_{1}$
b) Reference: this exercise was adapted from: Gross, Hauger, Schröder, Wall, Technische Mechanik 1, 13th edition, Springer Verlag (page 138).
$n=2, r=4, v=2, \quad 3 \times 2-(4+2)=0 \Longrightarrow$ the structure is statically determinate. We will cut the structure at the hinge and require equilibrium for each of the two bars.
(b)

First, consider the horizontal bar.
(A) $2 a G_{z}-3 a F_{1}=0 \Longrightarrow G_{z}=\frac{3}{2} F_{1}$,
(G) $-2 a A_{z}-a F_{1}=0 \Longrightarrow A_{z}=-\frac{1}{2} F_{1}$,
$\rightarrow \quad A_{x}+G_{x}=0$.

For the other bar, we find

$$
\begin{equation*}
-a F_{2}-2 a G_{z}+2 a G_{x}=0 \Longrightarrow G_{x}=\frac{1}{2} F_{2}+G_{z}=\frac{1}{2}\left(3 F_{1}+F_{2}\right) \tag{B}
\end{equation*}
$$

$\rightarrow \quad B_{x}-G_{x}=0$
$\Longrightarrow B_{x}=G_{x}=\frac{1}{2}\left(3 F_{1}+F_{2}\right)$,
(G) $2 a B_{x}-2 a B_{z}+a F_{2}=0 \quad \Longrightarrow B_{z}=\frac{1}{2} F_{2}+B_{x}=\frac{3}{2} F_{1}+F_{2}$.

Question 5

Sketched below is a Gerber girder. Check that the problem is statically determinate, calculate the reaction forces and finally calculate the internal forces and moments. Use the indicated coordinate system (blue)! Note that the positive y-direction points out of the plane of the paper. Hint: like in question 4(b) you can determine all reaction forces only if you consider equilibrium conditions separately for the two bars.

Solution: $n=2, r=4, v=2, \quad 3 \times 2-(4+2)=0 \Longrightarrow$ the structure is statically determinate. We will cut the girder at the hinge and require equilibrium for each of the two bars. Keep in mind that $\sin \left(30^{\circ}\right)=1 / 2$ and $\cos \left(30^{\circ}\right)=\sqrt{3} / 2$.

Let us start with the bar on the right, because there is only one reaction force.

$$
\begin{array}{ll}
\rightarrow & -G_{x}+\frac{\sqrt{3}}{2} F=0, \Longrightarrow G_{x}=\frac{\sqrt{3}}{2} F, \\
\text { F } \quad-G_{z} b+C_{z} b=0 \Longrightarrow C_{z}=G_{z}, \\
\uparrow & G_{z}-\frac{1}{2} F+C_{z}=0 \Longrightarrow C_{z}=G_{z}=\frac{1}{4} F .
\end{array}
$$

Here $(\mathrm{F}$) indicates the moment about the point where F is applied.
For the left bar we find

$$
\begin{array}{ll}
\rightarrow & A_{x}+G_{x}=0 \\
\text { A } & \Longrightarrow A_{x}=-G_{x}=-\frac{\sqrt{3}}{2} F \\
\text { (}-B_{z} a-G_{z} 2 a=0 & \Longrightarrow B_{z}=\frac{1}{2} F+G_{z} 2=F \\
\uparrow & A_{z}-F+B_{z}-G_{z}=0
\end{array} \Longrightarrow A_{z}=F-B_{z}+G_{z}=\frac{1}{4} F .
$$

We can check this solution by requiring equilibrium of the whole structure:

$$
\begin{array}{lll}
\rightarrow & A_{x}+\frac{\sqrt{3}}{2} F=0 & \rightarrow \frac{\sqrt{3}}{2} F-\frac{\sqrt{3}}{2} F=0 \quad \text { OK! } \\
\uparrow & A_{z}+B_{z}+C_{z}-F-\frac{1}{2} F=0 & \rightarrow \frac{1}{4} F+F+\frac{1}{4} F-F-\frac{1}{2} F=0 \quad \text { OK! }
\end{array}
$$

Now we can determine the internal forces. We need to make five cuts. It is convenient to consider the right side of the cut in case of the right bar.

By requiring equilibrium for section 1 , we get

$$
\begin{array}{ll}
\rightarrow \quad N_{1}(x)+A_{x}=0 & \Longrightarrow N_{1}(x)=-A_{x}=\frac{\sqrt{3}}{2} F, \\
\uparrow & \Longrightarrow Q_{1}(x)=A_{z}=\frac{1}{4} F \\
\text { S1 } \quad Q_{1}(x)=0 & -A_{z} x+M_{1}(x)=0
\end{array}>M_{1}(x)=A_{z} x=\frac{1}{4} F x .
$$

Here S1 indicates that we take the moment about the point of the cut.
In section 2

$$
\begin{array}{ll}
\rightarrow \quad N_{2}(x)+A_{x}=0 & \Longrightarrow N_{2}(x)=-A_{x}=\frac{\sqrt{3}}{2} F \\
\uparrow \quad A_{z}-Q_{2}(x)-F=0 & \Longrightarrow Q_{2}(x)=A_{z}-F=-\frac{3}{4} F \\
\left(\mathrm{~S} 2 \quad-A_{z} x+F\left(x-\frac{1}{2} a\right)+M_{2}(x)=0\right. & \Longrightarrow M_{2}(x)=A_{z} x-F\left(x-\frac{1}{2} a\right)=-\frac{3}{4} F x+\frac{1}{2} F a .
\end{array}
$$

In section 3

$$
\begin{array}{ll}
\rightarrow & N_{3}(x)+A_{x}=0 \\
\uparrow & A_{z}-Q_{3}(x)-F+B_{z}=0 \\
\text { S3 } & -A_{z} x+F\left(x-\frac{1}{2} a\right)-B_{z}(x-a)+M_{3}(x)=0 \\
\Longrightarrow & M_{3}(x)=A_{z} x-F\left(x-\frac{1}{2} a\right)+B_{z}(x-a)=\frac{1}{4} F x-\frac{1}{2} F a .
\end{array}
$$

$$
\Longrightarrow N_{3}(x)=-A_{x}=\frac{\sqrt{3}}{2} F,
$$

$$
\Longrightarrow Q_{3}(x)=A_{z}-F+B_{z}=\frac{1}{4} F
$$

Note that the moment goes to zero at the hinge where $x=2 a$.
In section 4
$\rightarrow \quad N_{4}(x)=0$,
$\uparrow \quad C_{z}+Q_{4}(x)=0$

$$
\Longrightarrow Q_{4}(x)=-C_{z}=-\frac{1}{4} F
$$

(S4) $C_{z}(2(a+b)-x)-M_{4}(x)=0 \Longrightarrow M_{4}(x)=\frac{1}{4} F(2(a+b)-x)$.

In section 5

$$
\begin{array}{ll}
\rightarrow & -N_{5}(x)+\frac{\sqrt{3}}{2} F=0 \\
\uparrow & Q_{5}(x)-\frac{1}{2} F+C_{z}=0 \\
\text { S5 } & \quad-M_{5}(x)-\frac{1}{2} F(2 a+b-x)+C_{z}(2(a+b)-x)=0 \\
& \Longrightarrow N_{5}(x)=\frac{\sqrt{3}}{2} F \\
\Longrightarrow & M_{5}(x)=-\frac{1}{2} F a+\frac{1}{4} F x
\end{array}
$$

Note that the internal forces in section 3 match those in section 5 at the position of the hinge $(x=2 a)$.

